Agronomy Science, przyrodniczy lublin, czasopisma up, czasopisma uniwersytet przyrodniczy lublin
Przejdź do głównego menu Przejdź do sekcji głównej Przejdź do stopki

Tom 79 Nr 4 (2024)

Artykuły

Effect of selected plant extracts on winter wheat (Triticum aestivum L.) plant growth stimulation and flag leaf infection by fungal pathogens

DOI: https://doi.org/10.24326/as.2024.5442
Przesłane: 16 października 2024
Opublikowane: 18.03.2025

Abstrakt

The aim of the study was to assess the effect of plant extracts from hemp inflorescences (H) as well as a mixture of extracts from hemp inflorescences, sage leaves and tansy leaves (M) on the stimulation of plant growth and the infection index of the flag leaf of winter wheat (Triticum aestivum L.) by fungal pathogens in a two-year field experiment. The analysis of selected biometric parameters in both growing seasons (2022/2023 and 2023/2024) showed a beneficial effect of both types of extracts, regardless of the type and concentration of the extract, on the length of ears, fresh weight of the aerial part of plants and the mass of one thousand wheat grains. The study also analyzed the intensity of the occurrence of wheat flag leaf diseases (septoria leaf blotch, tan spot of wheat, and brown leaf rust of cereals), in two growing seasons. In the case of septoria leaf blotch, the lowest infection index (IP) of the flag leaf was recorded after spraying the plants with a mixture of extracts (M) in the 2022/2023 season (4.91%) and after spraying the plants with hemp extract (H) in the 2023/2024 growing season (2.13%). Similarly, in the case of tan spot of wheat, in both growing seasons, the infection of the flag leaf with the pathogen was most effectively limited by hemp extract (H)  in the 2022/2023 season: 24.43%; in the 2023/2024 season: 6.23%. In turn, the infection with brown leaf rust of cereals was strongly correlated with weather conditions, and the lowest index of infection with this pathogen was recorded only after the application of chemical protection (F: 2022/2023: 0.33% and 2023/2024: 6.38%). The presented results constitute the basis for the production of a biological preparation that will contribute to the biostimulation of plants and optimize the protection of wheat against fungal diseases.

Bibliografia

  1. Abdel-Kader M.M., El-Mougy N.S., Khalil M.S.A., El-Gamal N.G., Attia M., 2023. Soil drenching and foliar spray with bioagents for reducing wheat leaf diseases under natural field condi-tions. J. Plant Dis. Prot. 130(2), 279–291. https://doi.org/10.1007/s41348-023-00705-z
  2. Acheuk F., Basiouni S., Shehata A.A., Dick K., Hajri H., Lasram S., Yilmaz M., Emekci M., Tsi-amis G., Spona-Friedl M., May-Simera H., Eisenreich W., Ntougias S., 2022. Status and pro-spects of botanical biopesticides in Europe and Mediterranean countries. Biomolecules 12(2), 311. https://doi.org/10.3390/biom12020311
  3. Alam M.A., Mandal M.S.N., Wang C., Ji W., 2013. Chromosomal location and SSR markers of
  4. a powdery mildew resistance gene in common wheat line N0308. Afr. J. Microbiol. Res. 7(6), 477–482. https://doi.org/10.5897/AJMR12.1816
  5. Ali Q., Perveen R., El-Esawi M.A., Ali S., Hussain S.M., Amber M., Iqbal N., Rizwan M., Alyem-eni M.N., El-Serehy H.A., Al-Misned F.A., Ahmad P., 2020. Low doses of Cuscuta reflexa extract act as natural biostimulants to improve the germination vigor, growth, and grain yield of wheat grown under water stress: Photosynthetic pigments, antioxidative defense mechanisms, and nutrient acquisition. Biomolecules 10(9), 1212. https://doi.org/10.3390/biom10091212
  6. Baltazar M., Correia S., Guinan K. J., Sujeeth N., Bragança R., Gonçalves B., 2021. Recent advanc-es in the molecular effects of biostimulants in plants: An overview. Biomolecules 11(8), 1096. https://doi.org/10.3390/biom11081096
  7. Bari R., Jones J.D., 2009. Role of plant hormones in plant defence responses. Plant Mol. Biol. 69, 473–488. https://doi.org/10.1007/s11103-008-9435-0
  8. Bastos L.M., Carciochi W., Lollato R.P., Jaenisch B.R., Rezende C.R., Schwalbert R., Vara Prasad P.V., Zhang G., Fritz A.K., Foster C., Wright Y., Young S., Bradley P., Ciampitti I.A., 2020. Winter wheat yield response to plant density as a function of yield environment and tillering po-tential: A review and field studies. Front. Plant Sci. 11, 54. https://doi.org/10.3389/fpls.2020.00054
  9. Ben-Jabeur M., Vicente R., López-Cristoffanini C., Alesami N., Djébali N., Gracia-Romero A., Dolores Serret M., López-Carbonell M., Araus J.L., Hamada W., 2019. A novel aspect of es-sential oils: coating seeds with thyme essential oil induces drought resistance in wheat. Plants 8(10), 371. https://doi.org/10.3390/plants8100371
  10. Carvalho R.D.S., Silva M.A.D., Borges M.T.M.R., Forti V.A., 2021. Plant extracts in agriculture and their applications in the treatment of seeds. Ciência Rural 52(5), e20210245. https://doi.org/10.1590/0103-8478cr20210245
  11. Caubel J., Launay M., Ripoche D., Gouache D., Buis S., Huard F., Huber L., Brun F., Bancal M.O., 2017. Climate change effects on leaf rust of wheat: Implementing a coupled crop-disease model in a French regional application. Eur. J. Agron. 90, 53–66. https://doi.org/10.1016/
  12. j.eja.2017.07.004
  13. Chen J., Wei J., Fu L., Wang S., Liu J., Guo Q., Jiang J., Tian Y., Che Z., Chen G., Liu, S. 2021. Tebuconazole resistance of Fusarium graminearum field populations from wheat in Henan Province. J. Phytopathol. 169(9), 525–532. https://doi.org/10.1111/jph.13021
  14. Dallagnol L.J., Ramos A.E.R., da Rosa Dorneles K., 2020. Silicon use in the integrated disease management of wheat: Current knowledge. In: Current Trends in Wheat Research. IntechOpen, London, 113–125.
  15. Directive 2009/128/EC of the European Parliament and of the Council of 21 October 2009 establish-ing a framework for Community action to achieve the sustainable use of pesticides. Off. J. Eur. Union L 2009, 309, 71–86.
  16. Dobosz A., Winiszewska G., Jakubowska M., 2023. Znaczenie nicieni – pasożytów roślin w upra-wie pszenicy zwyczajnej (Triticum aestivum L.) ze szczególnym uwzględnieniem formy ozi-mej [The importance of plant parasitic nematodes in the cultivation of wheat (Triticum aestivum L.) with particular interest in the winter form. Prog. Plant Prot. 63(2), 80–85 [in Polish]. http://dx.doi.org/10.14199/ppp-2023-009
  17. Drobek M., Frąc M., Cybulska J., 2019. Plant biostimulants: Importance of the quality and yield of horticultural crops and the improvement of plant tolerance to abiotic stress – A review. Agron-omy 9(6), 335. https://doi.org/10.3390/agronomy9060335
  18. El Jarroudi M., Kouadio L., Junk J., Maraite H., Tychon B., Delfosse P., 2022. Assessing the inter-play between weather and septoria leaf blotch severity on lower leaves on the disease risk on upper leaves in Winter wheat. J. Fungi 8(11), 1119. https://doi.org/10.3390/jof8111119
  19. El-Gamal N.G., El-Mougy N.S., Khalil M.S.A., Abdel-Kader M.M., 2022. Effectiveness of plant extracts for repressing stem rust disease severity of wheat caused by Puccinia graminis f. sp. tritici Pers under field conditions. Egypt. J. Biol. Pest Control 32, 109. https://doi.org/10.1186/s41938-022-00608-5
  20. Elzaawely A.A., Ahmed M.E., Maswada H.F., Xuan T.D., 2017. Enhancing growth, yield, bio-chemical, and hormonal contents of snap bean (Phaseolus vulgaris L.) sprayed with moringa leaf extract. Arch. Agron. Soil Sci. 63(5), 687–699. https://doi.org/10.1080/03650340.2016.1234042
  21. EPPO, 2012. EPPO PP1/026(4) Foliar and ear diseases on cereals. European and Mediterranean Plant Protection Organization.
  22. European Commission, 2019. The European Green Deal. COM(2019) 640 final.
  23. Fierascu I., Ungureanu C., Avramescu S.M., Fierascu R.C., Ortan A., Soare L.C., Paunescu A., 2015. In vitro antioxidant and antifungal properties of Achillea millefolium L. Rom. Biotechnol. Lett. 20(4), 10626–10636.
  24. Gebashe F., Gupta S., Van Staden J., 2021. Disease management using biostimulants. In: Biostimulants for crops from seed germination to plant development. Academic Press, 411–425. https://doi.org/10.1016/B978-0-12-823048-0.00005-8
  25. Godlewska K., Pacyga P., Michalak I., Biesiada A., Szumny A., Pachura N., Piszcz U., 2020. Field-scale evaluation of botanical extracts effect on the yield, chemical composition and antioxidant activity of celeriac (Apium graveolens L. var. rapaceum). Molecules 25(18), 4212. https://doi.org/10.3390/molecules25184212
  26. Gupta S., Doležal K., Kulkarni M.G., Balázs E., Van Staden J., 2022. Role of non-microbial bi-ostimulants in regulation of seed germination and seedling establishment. Plant Growth Regul. 97(2), 271–313. https://doi.org/10.1007/s10725-021-00794-6
  27. Hýsek J., Vavera R., Růžek P., 2017. Influence of temperature, precipitation, and cultivar character-istics on changes in the spectrum of pathogenic fungi in winter wheat. Int. J. Biometeorol. 61, 967–975. https://doi.org/10.1007/s00484-016-1276-y
  28. Jamiołkowska A., 2020. Natural compounds as elicitors of plant resistance against diseases and new biocontrol strategies. Agronomy 10(2), 173. https://doi.org/10.3390/agronomy10020173
  29. Kayim M., Nawaz H., Alsalmo A., 2022. Fungal diseases of wheat. In: Wheat-recent advances. IntechOpen. https://doi.org/10.5772/intechopen.98157
  30. Kisiriko M., Anastasiadi M., Terry L.A., Yasri A., Beale M.H., Ward J.L., 2021. Phenolics from medicinal and aromatic plants: Characterisation and potential as biostimulants and bioprotect-ants. Molecules 26(21), 6343. https://doi.org/10.3390/molecules26216343
  31. Kolmer J., 2013. Leaf rust of wheat: pathogen biology, variation and host resistance. Forests 4(1), 70–84. https://doi.org/10.3390/f4010070
  32. Kopcińska J., Skowera B., Wojkowski J., Zając E., Ziernicka-Wojtaszek A., 2018. Identyfikacja miesięcy suchych i wilgotnych w województwie opolskim na podstawie wybranych wskaźni-ków klimatycznych (1981–2010) [Identification of the dry and the wet months in the opolskie voivodeship on the basis of chosen climate indexes (1981–2010)]. Infrastrukt. Ekol. Teren. Wiej. 2(1), 421–434. https://doi.org/10.14597/INFRAECO.2018.2.1.028 [in Polish].
  33. Korpinen R.I., Välimaa A.L., Liimatainen J., Kunnas S., 2021. Essential oils and supercritical CO2 extracts of Arctic Angelica (Angelica archangelica L.), marsh Labrador tea (Rhododendron to-mentosum) and common tansy (Tanacetum vulgare) – chemical compositions and antimicrobial activities. Molecules 26(23), 7121. https://doi.org/10.3390/molecules26237121
  34. Kursa W., Jamiołkowska A., Skwaryło-Bednarz B., Kowalska G., Gałązka A., 2024a. Impact of selected plant extracts on winter wheat (Triticum aestivum L.) seedlings: growth, plant health status and soil activity. Agriculture 14(6), 959. https://doi.org/10.3390/agriculture14060959
  35. Kursa W., Jamiołkowska A., Wyrostek J., Kowalski R., 2024b. Attempts to use hemp (Cannabis sativa L. var. sativa) inflorescence extract to limit the growth of fungi occurring in agricultural crops. Appl. Sci. 14(4), 1680. https://doi.org/10.3390/app14041680
  36. Kursa W., Jamiołkowska A., Wyrostek J., Kowalski R., 2022. Antifungal effect of plant extracts on the growth of the cereal pathogen Fusarium spp. – An in vitro study. Agronomy 12, 3204 https://doi.org/10.3390/agronomy12123204
  37. Łozowicka B., Iwaniuk P., Konecki R., Kaczyński P., Kuldybayev N., Dutbayev Y., 2022. Impact of diversified chemical and biostimulator protection on yield, health status, mycotoxin level, and economic profitability in spring wheat (Triticum aestivum L.) cultivation. Agronomy 12(2), 258. https://doi.org/10.3390/agronomy12020258
  38. Ma Y., Freitas H., Dias M.C., 2022. Strategies and prospects for biostimulants to alleviate abiotic stress in plants. Front. Plant Sci. 13, 1024243. https://doi.org/10.3389/fpls.2022.1024243
  39. Maksoud S.A., Gad K.I., Hamed, E.Y., 2023. The potentiality of biostimulant (Lawsonia inermis L.) on some morphophysiological, biochemical traits, productivity and grain quality of Triticum aestivum L. BMC Plant Biol. 23(1), 95. https://doi.org/10.1186/s12870-023-04083-4 Matyja M., 2014. Social side of agricultural co-operatives. The case of agricultural production co-operatives in the Opole voivodeship. J. Agribus. Rural Dev. 33(3), 113–124.
  40. Montanarella L., Panagos P., 2021. The relevance of sustainable soil management within the Euro-pean Green Deal. Land Use Policy 100, 104950. https://doi.org/10.1016/j.landusepol.2020.104950
  41. Mrid R.B., Benmrid B., Hafsa J., Boukcim H., Sobeh M., Yasri A., 2021. Secondary metabolites as biostimulant and bioprotectant agents: A review. Sci. Total Environ. 777, 146204. https://doi.org/10.1016/j.scitotenv.2021.146204
  42. Mukherjee A., Patel J.S., 2020. Seaweed extract: biostimulator of plant defense and plant productivi-ty. Int. J. Environ. Sci. Technol. 17(1), 553–558. https://doi.org/10.1007/s13762-019-02442-z
  43. Panasiewicz K., Sulewska H., Koziara W., 2008. Efficacy of biological and chemical active com-pounds in protection of Triticum durum against fungal diseases. J. Res. Appl. Agric. Eng. 53(4), 30–32.
  44. Pannacci E., Baratta S., Falcinelli B., Farneselli M., Tei F., 2022. Mugwort (Artemisia vulgaris L.) Aqueous extract: Hormesis and biostimulant activity for seed germination and seedling growth in vegetable crops. Agriculture 12(9), 1329. https://doi.org/10.3390/agriculture12091329
  45. Pazdiora P.C., da Rosa Dorneles K., Morello T.N., Nicholson P., Dallagnol L.J., 2021. Silicon soil amendment as a complement to manage tan spot and fusarium head blight in wheat. Agron. Su-stain. Dev. 41, 1–13. https://doi.org/10.1007/s13593-021-00677-0
  46. Pietrusińska-Radzio A., Żurek M., 2024. Wpływ rdzy brunatnej na uprawy pszenicy w kontekście zmian klimatu. [The impact of leaf rust on wheat crops in the context of climate change]. Biul. Inst. Hod. Aklim. Roś. 301, 63–68. https://doi.org/10.37317/biul-2024-0007 [in Polish].
  47. Program Ochrony Roślin Rolniczych [Agricultural Plant Protection Program], 2022. Argo Wydawnictwo, Suchy Las [in Polish].
  48. Program Ochrony Roślin Rolniczych [Agricultural Plant Protection Program], 2023. Argo Wydawnictwo, Suchy Las [in Polish].
  49. Program Ochrony Roślin Rolniczych [Agricultural Plant Protection Program], 2024. Argo Wydawnictwo, Suchy Las [in Polish].
  50. Rădoi D. M., Bonciu E., Păunescu G., Roșculete C. A., Roșculete E., 2022. A brief review on the influence of flag leaf on cereals production. Ann. Univ. Craiova, ser. Agric. Montanol. Cadas-tre 52(1), 320–327. https://doi.org/10.52846/aamc.v52i1.1351
  51. Rodríguez-Moreno V.M., Jiménez-Lagunes A., Estrada-Avalos J., Mauricio-Ruvalcaba J.E., Pa-dilla-Ramírez J.S., 2020. Weather-data-based model: an approach for forecasting leaf and stripe rust on winter wheat. Meteorol. Appl. 27, e1896. https://doi.org/10.1002/met.1896
  52. Rohr J.R., Barrett C.B., Civitello D.J., Craft M.E., Delius B., DeLeo G.A., Hudson P.J., Jouanard N., Nguyen K.N., Delius B., Ostfeld R.S., Remais J.V., Riveau G., Sokolow S.H., Tilman D., 2019. Emerging human infectious diseases and the links to global food production. Nat. Sus-tain. 2(6), 445–456. https://doi.org/10.1038/s41893-019-0293-3
  53. Rouphael Y., Colla G., 2020. Toward a sustainable agriculture through plant biostimulants: From experimental data to practical applications. Agronomy 10(10), 1461. https://doi.org/10.3390/agronomy10101461
  54. Sakr N., 2016. The role of silicon (Si) in increasing plant resistance against fungal diseases. Hellenic Plant Prot. J. 9(1), 1–15. https://doi.org/10.1515/hppj-2016-0001
  55. Schierenbeck M., Fleitas M.C., Simón M.R., 2023. The interaction of fungicide and nitrogen for aboveground biomass from flag leaf emergence and grain yield generation under tan spot infec-tion in wheat. Plants 12(1), 212. https://doi.org/10.3390/plants12010212
  56. da Silva Santana A., Baldin E. L. L., dos Santos T.L.B., Baptista Y.A., dos Santos M.C., Lima A.P.S., Tanajura L.S., Vieira T.M., Crotti A.E.M., 2022. Synergism between essential oils: A promising alternative to control Sitophilus zeamais (Coleoptera: Curculionidae). Crop Prot. 153, 105882. https://doi.org/10.1016/j.cropro.2021.105882
  57. Simón M.R., Fleitas M.C., Castro A.C., Schierenbeck M., 2020. How foliar fungal diseases affect nitrogen dynamics, milling, and end-use quality of wheat. Front. Plant Sci. 11, 569401. https://doi.org/10.3389/fpls.2020.569401
  58. Singh J., Bhatnagar S.K., Tomar A., 2019. Study on fungicidal effect of plant extracts on plant pathogenic fungi and the economy of extract preparation and efficacy in comparison to synthet-ic/chemical fungicides. J. Appl. Nat. Sci. 11(2), 333–337. https://doi.org/10.31018/jans.v11i2.2053
  59. Skowera B., Pula J., 2004. Skrajne warunki pluwiotermiczne w okresie wiosennym na obszarze Polski w latach 1971–2000 [Pluviometric extreme conditions in spring season in Poland in the years 1971–2000]. Acta Agrophys. 3(1), 171–177 [in Polish].
  60. Soto-Gómez D., Pérez-Rodríguez P., 2022. Sustainable agriculture through perennial grains: Wheat, rice, maize, and other species. A review. Agric. Ecosys. Environ. 325, 107747. https://doi.org/10.1016/j.agee.2021.107747
  61. Szczygieł T., Koziróg A., Otlewska A., 2024. Synthetic and natural antifungal substances in cereal grain protection: a review of bright and dark sides. Molecules 29(16), 3780. https://doi.org/10.3390/molecules29163780
  62. Szparaga A., 2023. From biostimulant to possible plant bioprotectant agents. Agric. Eng. 27(1), 87–98. https://doi.org/10.2478/agriceng-2023-0007
  63. Szpunar-Krok E., Depciuch J., Drygaś B., Jańczak-Pieniążek M., Mazurek K., Pawlak R., 2022. The influence of biostimulants used in sustainable agriculture for antifungal protection on the chemical composition of winter wheat grain. Int. J. Environ. Res. Public Health 19(20), 12998. https://doi.org/10.3390/ijerph192012998
  64. Tsialtas J.T., Theologidou G.S., Karaoglanidis G.S., 2018. Effects of pyraclostrobin on leaf diseas-es, leaf physiology, yield and quality of durum wheat under Mediterranean conditions. J. Crop Prot. 113, 48–55. https://doi.org/10.1016/j.cropro.2018.07.008
  65. Wens A., Geuens J., 2022. In vitro and in vivo antifungal activity of plant extracts against common phytopathogenic fungi. J. BioSci. Biotechnol. 11(1), 15–21.
  66. Zamojska J., Danielewicz J., Jajor E., Wilk R., Horoszkiewicz-Janka J., Dworzańska D., Węgorek P., Korbas M., Bubniewicz P., Ciecierski W., Narkiewicz-Jodko, J., 2018. The influence of fo-liar application of silicon on insect damage and disease occurrence in field trials. Fresenius En-viron. Bull. 27(5A), 3300–3305.
  67. Zulfiqar F., Casadesús A., Brockman H., Munné-Bosch S., 2020. An overview of plant-based natural biostimulants for sustainable horticulture with a particular focus on moringa leaf ex-tracts. Plant Sci. 295, 110194. https://doi.org/10.1016/j.plantsci.2019.110194

Downloads

Download data is not yet available.

Podobne artykuły

<< < 1 2 3 4 5 6 7 8 9 10 > >> 

Możesz również Rozpocznij zaawansowane wyszukiwanie podobieństw dla tego artykułu.