Agronomy Science, przyrodniczy lublin, czasopisma up, czasopisma uniwersytet przyrodniczy lublin
Przejdź do głównego menu Przejdź do sekcji głównej Przejdź do stopki

Tom 73 Nr 2 (2018)

Artykuły

Białka gluteninowe – charakterystyka i ich wpływ na właściwości reologiczne pszenicy. Praca przeglądowa

DOI: https://doi.org/10.24326/asx.2018.2.1
Przesłane: 28 grudnia 2018
Opublikowane: 29-07-2018

Abstrakt

Pszenica należy do najważniejszych roślin zbożowych i jest powszechnie wykorzystywana w celach konsumpcyjnych. Obecnie prowadzi się silną selekcję odmian pod względem poprawy jej cech jakościowych. Jedną z ważniejszych cech pszenicy, decydującą o jej późniejszym wykorzystaniu, jest zawartość białek, które determinują właściwości lepkosprężyste ciasta pszennego. Właściwości reologiczne glutenu warunkowane są przez ilość i kompozycję białek zapasowych (glutenin i gliadyn) wchodzących w jego skład, przy czym białka gluteninowe wykazują znacząco większy wpływ na korzystne właściwości reologiczne. Poznanie ich składu podjednostkowego w ziarnie pszenicy, szczególnie podjednostek glutenin wysokocząsteczkowych (HMW – GS), umożliwia wybór genotypów o pożądanych właściwościach reologicznych na wczesnym etapie selekcji, co pozwala na szybsze i dokładniejsze osiągnięcie założonych przez hodowców celów. Rozwój technologii pozwolił na wykorzystanie nowych metod identyfikacji składu podjednostkowego glutenin. W tym celu obecnie stosuje się metody SDS-PAGE, RP-HPLC, HPCE, MALDI-TOF-MS oraz PCR.

Bibliografia

  1. Abdel-Mawgood A.L., 2008. Molecular markers for predicting end-products quality of wheat (Triticum Aestivum L.). Afr. J. Biotechnol. 7(14), 2324–2327.
  2. Anjum F.M., Khan M.R., Din A., Saeed M., Pasha I., Arshad M.U., 2007. Wheat gluten: High molecular weight glutenin subunits – structure, genetics, and relation to dough elasticity. J. Food Sci. 72(3), R56–63.
  3. Barak S., Mudgil D., Khatkar B.S., 2013. Relationship of gliadin and glutenin proteins with dough rheology, flour pasting and bread making performance of wheat varieties. LWT – Food Sci. Technol. 51, 211–217.
  4. Barak S., Mudgil D., Khatkar B.S.. 2014. Influence of gliadin and glutenin fractions on rheological, pasting, and textural properties of dough. Int. J. Food Prop. 17(7), 1428–1438.
  5. Belderok B., Mesdag J., Donner D.A., 2000. Bread-making quality of wheat: A century of breeding in Europe. Springer Science+Business Media Dordrecht, 30–63.
  6. Belitz H.D., Kieffer R., Seilmeier W., Wieser H., 1986. Structure and function of gluten proteins. Cereal Chem. 63(4), 336–341.
  7. Bloksma A. H., Bushuk W., 1988. Rheology and chemistry of dough. In: Wheat chemistry and technology, ed. Y. Pomeranz, Am. Assoc. Cereal Chem., St. Paul, MN, 131–219.
  8. Brönneke V., Zimmermann G., Killermann B., 2000. Effect of high molecular weight glutenins and D-zone gliadins on breadmaking quality in German wheat varieties. Cereal Res. Commun. 28, 187–194.
  9. Cho S.W.,Roy S.K., Chun J.B., Cho K., Park C.S., 2017. Overexpression of the Bx7 high molecular weight glutenin subunit on the Glu-B1 locus in a Korean wheat landrace. Plant Biotechnol. Rep. 11, 97–105.
  10. D’Ovidio, R., Masci S., 2004. The low-molecular-weight glutenin subunits of wheat gluten. J. Cereal Sci. 39, 321–339.
  11. Dhaka V., Khatkar B.S.. 2015. Effects of gliadin/glutenin and HMW-GS/LMW-GS ratio on dough rheological properties and bread-making potential of wheat varieties. J. Food Quality 38, 71–82.
  12. Dobraszczyk B.J., Morgenstern M.P., 2003. Rheology and the breadmaking process. J. Cereal Sci. 38(3), 229–245.
  13. DuPont F.M., Vensel W.H., Chan R., Kasarda D.D., 2000. Characterization of the 1B-Type ω-Gliadins from Triticum Aestivum Cultivar Butte. Cereal Chem. 77(5), 607–14.
  14. Franaszek S., Langner M., Salmanowicz B., 2013. Niskocząsteczkowe białka gluteninowe i ich wpływ na jakość wypiekową pszenicy. Biul. IHAR 269, 3–13.
  15. Gao L., Ma W., Chen J., Wang K., Li J., Wang S., Bekes F., Appels R., Yan Y., 2010. Characterization and comparative analysis of wheat high molecular weight glutenin subunits by SDS-PAGE, RP-HPLC, HPCE, and MALDI-TOF-MS. J. Agric. Food Chem. 58(5), 2777–2786.
  16. Gianibelli M.C., Larroque O.R., MacRitchie F., Wrigley C.W., 2001. Biochemical, genetic, and molecular characterization of wheat glutein and its component subunits. Cereal Chem. 78(6), 635–646.
  17. Grundas S.T., 2003. WHEAT/The Crop. In: Encyclopedia of food sciences and nutrition, 6130–6137.
  18. Gupta R.B., Popineau Y., Lefebvre J., Cornec M., Lawrence G.J., MacRitchie F., 1995. Biochemical basis of flour properties in bread wheats. II. Changes in polymeric protein formation and dough/gluten properties associated with the loss of low Mr or high Mr glutenin subunits. J. Cereal Sci. 21(2), 103–116.
  19. Ivanov P., Todorov I., Stoeva I., Ivanova I., 1998. Biochemical and technological characteristics of Triticum Aestivum lines from two crosses between high and low breadmaking quality cultivars. Cereal Res. Commun. 26(4), 455–461.
  20. Jang Y.R., Beom H.R., Altenbach S.B., Lee M.K., Lim S.H., Lee J.Y., 2017. Improved method for reliable HMW-GS identification by RP-HPLC and SDS-PAGE in common wheat cultivars. Mol. 22(7), 1055. DOI:10.3390/molecules22071055.
  21. Juhász A., Larroque O.R., Tamás L., Hsam S.L.K., Zeller F.J., Békés F., Bedõ Z., 2003. Bánkúti 1201 - an old Hungarian wheat variety with special storage protein composition. Theor. Appl. Genet. 107(4), 697–704.
  22. Kaur A., Singh N., Ahlawat A.K., Kaur S., Singh A.M., Chauhan H., Singh G.P., 2013. Diversity in grain, flour, dough and gluten properties amongst Indian wheat cultivars varying in high molecular weight subunits (HMW-GS). Food Res. Int. 53, 63–72.
  23. Kączkowski J., 2002. Nowe poglądy na strukturę i funkcje białek zapasowych zbóż na przykładzie pszenicy (Triticum Aestivum L.). Biul, IHAR 223/224, 3–31.
  24. Kocourková Z., Bradová J., Kohutová Z., Slámová L., Vejl P., Horčička P., 2008. Wheat breeding for the improved bread-making quality using pcr based markers of glutenins. Czech J. Genet. Plant Breed. 44(3), 105–113.
  25. Kreis M. Forde B.G., Rahman S., Miflin B.J., Shewry P.R., 1985. Molecular evolution of the seed storage proteins of barley, rye and wheat. J. Mol. Biol 183(3), 499–502.
  26. Kubicka H., Nawracała J., Górny A.G., 2004. Zarys genetyki zbóż: praca zbiorowa. T. 1, Jęczmień, pszenica i żyto. IGR PAN, Poznań, 238–259.
  27. Li J., Han C., Zhen S., Li X., Yan Y., 2013. Characterization of HMW glutenin subunit Bx7OE and its distribution in common wheat and related species. Plant Genet. Res. 12(2), 191–198.
  28. Liang D., Tang J., Peña R.J., Singh R., He X., Shen X., Yao D., Xia X., He Z., 2010. Characterization of CIMMYT bread wheats for high- and low-molecular weight glutenin subunits and other quality-related genes with SDS-PAGE, RP-HPLC and molecular markers. Euphytica 172(2), 235–250.
  29. Ma W., Zhang W., Gale K.R., 2003. Multiplex-PCR typing of high molecular weight glutenin alleles in wheat. Euphytica 134, 51–60.
  30. MacRitchie F., 2016. Seventy years of research into breadmaking quality. J. Cereal Sci. 70, 123–131.
  31. MacRitchie F., Lafiandra D., 1997. Structure-function relationships of wheat proteins. In: Food proteins and their applications. Marcel Dekker, Inc., New York, 293–324.
  32. Masci S., Rovelli L., Kasarda D.D., Vensel W.H., Lafiandra D., 2002. Characterisation and chromosomal localisation of C-type low-molecular-weight glutenin subunits in the bread wheat cultivar Chinese Spring. Theor. Appl. Genet. 104, 422–428.
  33. Meng X.G., Cai S.X., 2008. Association between glutenin alleles and Lanzhou alkaline stretched noodle quality of northwest China spring wheats. II. Relationship with the variations at the Glu-1 loci. Cereal Res. Commun. 36(1), 107–115.
  34. Moczulski M., Salmanowicz B.P., 2003. Multiplex PCR identification of wheat HMW glutenin subunit genes by allele-specific markers. J. Appl. Genet. 44(4), 459–471.
  35. Obreht D., Kobiljski B., Djan M., Vapa L., 2007. Identification of Glu-B1 alleles in bread wheat cultivars using PCR. Genetika 39(1), 23–28.
  36. Ohm J.B., Ross A.S., Peterson C.J., Ong Y.L., 2008. relationships of high molecular weight glutenin subunit composition and molecular weight distribution of wheat flour protein with water absorption and color characteristics of noodle dough. Cereal Chem. 85(2), 123–31.
  37. Osborne T.B. 1909. The vegetable proteins. Longmans, Green and Co., London.
  38. Parchment O., Shewry P.R., Tatham A.S., Osguthorpe D.J., 2001. Molecular modeling of unusual spiral structure in elastomeric wheat seed protein. Cereal Chem. 78(6), 658–662.
  39. Payne P.I., 1987. Genetics of wheat storage proteins and the effect of allelic variation on bread-making wuality. Ann. Rev. Plant Physiol. 38, 141–153.
  40. Peña E., Bernardo A., Soler C., Jouve N., 2005. Relationship between common wheat (Triticum Aestivum L.) gluten proteins and dough rheological properties. Gluten proteins and rheological properties in wheat. Euphytica 143, 169–77.
  41. Pogna N.E. Autran J.C., Mellini F., Lafiandra D., Feillet P., 1990. Chromosome 1B-encoded gliadins and glutenin subunits in durum wheat: genetics and relationship to gluten strength. J. Cereal Sci. 11, 15–34.
  42. Rogers W.J., Payne P.I., Seekings J.A., Sayers E.J., 1991. Effect on breadmaking quality of x-type and y-type high molecular weight subunits of glutenin. J. Cereal Sci. 14, 209–221.
  43. Schwarz G., Felsenstein F.G., Wenzel G., 2004. Development and validation of a PCR-based marker assay for negative selection of the HMW glutenin allele Glu-B1-1d (Bx-6) in wheat. Theor. Appl. Genet. 109(5), 1064–1069.
  44. Shewry P.R., Halford N.G., Lafiandra D., 2003. Genetics of wheat gluten proteins. Advances in genetics 49, 111–184.
  45. Shewry P.R., Napier J.A., Tatham A.S., 1995. Seed storage proteins: structures and biosynthesis. The Plant Cell 7(7), 945–956.
  46. Shewry P.R., Popineau Y., Lafiandra D., Belton P., 2001. Wheat glutenin subunits and dough elasticity: findings of the EUROWHEAT project. Trends in Food Sci. Technol. 11, 433–441.
  47. Shewry P.R., Tatham A.S., 1990. The prolamin storage proteins of cereal seeds: structure and evolution. Biochem. J. 267, 1–12.
  48. Song Y., Zheng Q., 2007. Dynamic rheological properties of wheat flour dough and proteins. Trends in Food Sci. Technol. 18(3), 132–138.
  49. Thover M., Koppel R., Ingver A., 2001. Characterization of gliadin and HMW glutenin subunits alleles and their relation to bread-making quality in common spring wheat cultivars and breeding lines. Cereal Res. Commun. 29(3/4), 405–412.
  50. Tronsmo K.M., Magnus E.M., Baardseth P., Schofield J.D., Aamodt A., Færgestad E.M., 2003. Comparison of small and large deformation rheological properties of wheat dough and gluten. Cereal Chem. 80(5), 587-595.
  51. Tuncil Y.E., Jondiko T., Tilley M., Hays D.B., Awika J.M., 2016. Combination of null alleles with 7+9 allelic pair at Glu-B1 locus on the long arm of group 1 Chromosome improves wheat dough functionality for tortillas. LWT - Food Sci. Technol. 65, 683–688.
  52. Uthayakumaran S., Beasley H.L., Stoddard F.L., Keentok M., Phan-Thien N., Tanner R.I., Békés F., 2002. Synergistic and additive effects of three high molecular weight glutenin subunit loci. I. Effects on wheat dough rheology. Cereal Chem. 79(2), 294–300.
  53. Uthayakumaran S., Gras P.W., Stoddard F.L., Békés F., 1999. Effect of varying protein content and glutenin-to-gliadin ratio on the funtional properties of wheat dough. Cereal Chem. 76(3), 389–394.
  54. Veraverbeke W.S., Delcour J.A., 2002. wheat protein composition and properties of wheat glutenin in relation to breadmaking functionality. Crit. Rev. Food Sci. Nutr. 42(3), 179–208.
  55. Verbruggen I.M., Veraverbeke W.S., Delcour J.A., 2001. Significance of LMW-GS and HMW-GS for Dough Extensibility: ’Addition’ versus ’Incorporation’ Protocols. J. Cereal Sci. 33(3), 253–260.
  56. Waga J. 2004. Structure and allergenicity of wheat gluten proteins – a review. Pol. J. Food Nutr. Sci. 13/54(4), 327–338.
  57. Wang W., Khan K., 2009. Effect of the molecular weight distribution of glutenin protein from an extra-strong wheat flour on rheological and breadmaking properties through reconstitution studies. Cereal Chem. 86(6), 623–632.
  58. Wieser H., 2007. Chemistry of gluten proteins. Food Microbiol. 24, 115–119.
  59. Wieser H., Zimmermann G., 2000. Importance of amounts and proportions of high molecular weight subunits of glutenin for wheat quality. Eur. Food Res. Technol. 210, 324–330.
  60. Witkowski E., Waga J., Witkowska K., Rapacz M., Gut M., Bielawska A., Luber H., Lukaszewski A.J., 2008. Association between frost tolerance and the alleles of high molecular weight glutenin subunits present in Polish winter wheats. Euphytica 159(3), 377–384.
  61. Wrigley C.W., 1996. Giant proteins with flour power. Nature 381, 738–739.
  62. Xu Q., Xu J., Liu C.L., Chang C., Wang C.P., You M.S., Li B.Y., Liu G.T., 2008. PCR-based markers for identification of HMW-GS at Glu-B1x loci in common wheat. J. Cereal Sci. 47, 394–398.

Downloads

Download data is not yet available.

Inne teksty tego samego autora

Podobne artykuły

<< < 11 12 13 14 

Możesz również Rozpocznij zaawansowane wyszukiwanie podobieństw dla tego artykułu.