Abstract
The aim of the study was to identify and assess the spatial diversity of generating of animal and vegetal waste by entities from the agricultural sector in the EU countries along with the determination of the importance of this type of waste in total waste generated in individual countries. Statistical data used in the study were obtained from EUROSTAT. The research period was 2016, while the research area covered 25 EU countries. The data was subjected to quantitative analysis using descriptive and parametric statistics. It was found that animal and vegetal waste has the largest share in the structure of waste from the agricultural sector (accounting for 81.6% of all waste in the agricultural sector in the EU in 2016). It has been shown that generating of vegetal and animal waste in agricultural sector in the EU countries is characterized by spatial diversity. Most of this waste type was generated in Spain and the Netherlands. The dominant position of Spain resulted from significant share of this country in the EU volume of animal faeces, urine and manure generation. High position of the Netherlands was associated with a large share of vegetal waste. France, Germany, Slovakia and Sweden ranked next. Nearly 80% of all analyzed groups of waste came from these countries, which indicates a high degree of spatial concentration of the studied phenomenon. In this context, it can be stated that these countries are predestined to base their development on the concept of the bioeconomy. It is a challenge for the research and development sphere regarding development of innovative ways of managing agricultural vegetal and animal waste.
References
- ANNEX ‒ Correspondence of waste codes to the four material flows MF1 to MF4, https://ec.europa.eu/eurostat/documents/8105938/8465062/env_ac_cur_esms_MFA_correspondence.pdf [download date 19.03.2019].
- Bartoszczuk P., 2012. Opłacalność energetycznego wykorzystania energii elektrycznej z biologicznych nośników energii oraz wiatru. In: D. Niedziółka (ed.), Zielona energia w Polsce. CeDeWu, Warszawa, 153‒178.
- Biogas Barometer, 2017. Eurobserv’er, https://www.eurobserv-er.org/biogas-barometer-2017/ [download date 15.05.2019].
- Chyłek E.K., Niepytalski T., Śliwa J.A., 2016. Biogospodarka o obiegu zamkniętym. Przem. Spoż. 70(7), 2‒6, DOI 10.15199/65.2016.7.1
- Commission Regulation (EU) No 849/2010 of 27 September 2010 amending Regulation (EC) No 2150/2002 of the European Parliament and of the Council on waste statistics (Text with EEA relevance), 2010. Official Journal of the European Union, L 253/2.
- Communication from the Commission to the European Parliament, the Council, the European Eco-nomic and Social Committee and the Committee of the Regions: Innovating for Sustainable Growth: A Bioeconomy for Europe, 2012. COM(2012) 60, Brussels, http://ec.europa.eu/research/bioeconomy/pdf/201202_innovating_sustainable_ growth [down-load date 15.05.2019].
- Directive 2008/98/EC of The European Parliament and of The Council of 19 November 2008 on waste and repealing certain Directives (Text with EEA relevance), 2008. Official Journal of the European Union, L 312/3.
- Directorate-General for Environment, European Commision, Circular Economy Package, ec.europa.eu/environment/circular-economy/index_en.html [download date 15.05.2019].
- EBA Statistical Report, 2018. Annual Statistical Report of the European Biogas Association European Overview Chapter, 2018. European Biogas Association (EBA), Brussels.
- EUROSTAT, 2019a. Eurostat’s Database, http://ec.europa.eu/eurostat [download date 19.03.2019].
- EUROSTAT, 2019b. https://ec.europa.eu/eurostat/statistics-explained/index.php/Glossary:Purchasing_power_standard_(PPS) [download date 28.04.2019].
- Godlewska-Majkowska H., Komor A., 2014. Biogospodarka a zarządzanie marketingowe w wy-branych jednostkach samorządu terytorialnego. Pr. Nauk. UE Wrocł. Gospod. Przestrz. 341, 23‒36, DOI: 10.15611/pn.2014.341.02
- Gradziuk P., 2017. Potencjał i prognozy wykorzystania biogazu rolniczego w Polsce. Rocz. Nauk. Stow. Ekon. Agrobiz. 19(3), 64‒70.
- Kacprzak M., Chabelski T., Zakrzewski J., 2018. Przetwarzanie odpadów biodegradowalnych na organiczno-wapniowy nawóz oraz dystrybucja i plonotwórcza efektywność nawozu. Inż. Ekol. 6, 182‒190, DOI: 10.12912/23920629/99309
- Komor A., 2018. Przestrzenne zróżnicowanie produkcji biomasy rolniczej pochodzenia roślinnego w państwach UE w kontekście rozwoju biogospodarki. Zesz. Nauk. SGGW Warsz. Probl. Roln. Świat. 18(1), 100‒110, DOI: 10.22630/PRS.2018.18.1.9.
- Kowalczyk-Juśko A., 2008. Wykorzystanie wybranych odpadów z przemysłu rolno-spożywczego jako substratów do produkcji biogazu. In: P. Gradziuk (ed.), Energia odnawialna. „Wieś Jutra”, Płońsk–Warszawa, 125‒132.
- Łabętowicz J., Stępień W., Kobiałka M., 2019. Innowacyjne technologie przetwarzania odpadów na nawozy agroekologicznej użyteczności. Inż. Ekol. 1, 13‒23, DOI: 10.12912/23920629/106203
- Lewandowski W.M., Ryms M., Meler P., 2010. Techniczno-chemiczna piroliza do biopaliw ciekłych i gazowych, jako metoda podnoszenia sprawności konwersji energii biomasy. Nafta-Gaz 8, 675‒680.
- Owczuk M., Wardzińska D., Zamojska-Jaroszewicz A., Matuszewska A., 2013. Wykorzystanie odpadów biodegradowalnych do produkcji biogazu jako alternatywnego źródła energii odnawialnej. Stud. Ecol. Bioeth. UKSW 11(3), 133‒144.
- Poskrobko B., Poskrobko T., 2012. Zarządzanie środowiskiem w Polsce. PWE, Warszawa.
- Pyłka-Gutowska E., 2004. Ekologia z ochroną środowiska. Oświata, Warszawa.
- Rechkemmer A., Falkenhayn L. von, 2009. The human dimensions of global environmental change: Ecosystem services, resilience and governance. Eur. Phys. J. Conferences 1, 3‒17, EDP Sciences, DOI: 10.1140/epiconf/e2009-00906-y
- Regulation (EU) No 691/2011 of The European Parliament and of The Council of 6 July 2011 on European environmental economic accounts (Text with EEA relevance), 2011. Official Journal of the European Union, L 192/1.
- Sabiiti E.N., 2011. Utilising agricultural waste to enhance food security and conserve the environment. Afr. J. Food Agric. Nutr. Dev. 11(6), 1‒9.
- Sadecka Z., Suchowska-Kisielewicz M., 2016. Możliwość wykorzystania substratów organicznych w procesie fermentacji. Rocz. Ochr. Środ. 18, 400‒413.
- Saveyn H., Eder P. (tłumaczenie B. Wiese), 2014. Kryteria end-of-waste dla odpadów biodegradowalnych poddawanych obróbce biologicznej (kompost i fermentat): Propozycje techniczne. Raport końcowy. IPTS Sewilla, Hiszpania, DOI: 10.2791/6295, available online: http://pigo.org.pl?wp-content/uploads/2015/07/JRC87124_PL-2.pdf [download date 15.05.2019].
- Wytyczne w zakresie wykorzystania produktów ubocznych oraz zalecanego postępowania z odpadami w rolnictwie i przemyśle rolno-spożywczym, 2010. Wyd. ITP, Falenty-Warszawa.
Downloads
Download data is not yet available.
-
Borys Hryńczuk,
Ryszard Weber,
The influence of the mode of tillage on the intensity of microbiological changes in soil and the yielding of crops
,
Agronomy Science: Vol. 59 No. 2 (2004)
-
Anna Nowak,
Volodymdyr Kovaliv,
Karolina Rulitska,
Assessment of agricultural production potential and efficiency of its use in Poland and Ukraine
,
Agronomy Science: Vol. 77 No. 4 (2022)
-
Jarosław Figurski,
Edmund Lorencowicz,
Changes in technical equipment and European Union grants in chosen farms of Lublin Province
,
Agronomy Science: Vol. 63 No. 2 (2008)
-
JACEK ANTONKIEWICZ,
BARBARA WIŚNIOWSKA-KIELIAN,
Effect of furnace waste and municipal sewage sludge on the Ca, Mg, K, Na and P uptake by a mixture of grasses
,
Agronomy Science: Vol. 69 No. 2 (2014)
-
Hanna Klikocka,
Aneta Jarosz-Angowska,
Anna Nowak,
Barbara Skwaryło-Bednarz,
Assessment of Poland food security in the context of agricultural production in 2010–2020
,
Agronomy Science: Vol. 77 No. 3 (2022)
-
Monika Skowrońska,
The content of mineral nitrogen in the soil fertilized with selected wastes
,
Agronomy Science: Vol. 59 No. 2 (2004)
-
HANNA SIWEK,
MAGDALENA SOBOLEWSKA,
GRZEGORZ HURY,
MARZENA GIBCZYŃSKA,
The effect of fertilization with ash from biomass and lime on the characteristics of grain, flour and dough from winter wheat varieties RGT Kilimanjaro (Triticum aestivum var. Kilimanjaro)
,
Agronomy Science: Vol. 72 No. 3 (2017)
-
Roman Molas,
Halina Borkowska,
Barbara Sawicka,
Wieloletnie użytkowanie ślazowca pensylwańskiego – wartościowego źródła biomasy
,
Agronomy Science: Vol. 76 No. 1 (2021)
-
PIOTR PSZCZÓŁKOWSKI,
BARBARA SAWICKA,
ELVYRA JARIENE,
ANNA KIEŁTYKA-DADASIEWICZ,
Phenotypic yield and its structure variability of moderately late and late potato cultivars
,
Agronomy Science: Vol. 75 No. 4 (2020)
-
BARTOSZ RÓŻANOWSKI,
KATARZYNA MOŻDŻEŃ,
JADWIGA WÓJCIK,
RYSZARD NOSALSKI,
PEIMAN ZANDI,
YAOSHENG WANG,
Influence of He-Ne laser irradiation and cadmium and lead on changes in cell cycles at Zea mays L.
,
Agronomy Science: Vol. 75 No. 1 (2020)
<< < 1 2 3 4 5 6 7 8 9 10 > >>
You may also start an advanced similarity search for this article.