Skip to main navigation menu Skip to main content Skip to site footer

Vol. 20 No. 2 (2021)

Articles

THE GROWTH, PHOTOSYNTHETIC PARAMETERS AND NITROGEN STATUS OF BASIL, CORIANDER AND OREGANO GROWN UNDER DIFFERENT LED LIGHT SPECTRA

DOI: https://doi.org/10.24326/asphc.2021.2.2
Submitted: February 12, 2020
Published: 2021-04-26

Abstract

Growth, morphological parameters, photosynthetic performance and nitrogen status were investigated in leafy herbs grown in light-limited time in a greenhouse under different light spectra emitted by LEDs. Fluorescence-based sensors that detect crop N status and maximum photochemical efficiency of photosystem II were used in this study. Four light treatments with the ratio of Red, Blue and White LEDs including 1) R40 + B50 + W10, 2) R70 + B20 + W10, 3) R70 + B20 + W10 + Far-Red and 4) White LEDs as control were used in this study. Dominant red light and/or white LED lights at 200 µmol m–2 s–1 at plant level and a 12 h photoperiod provided the most favourable conditions for plant growth and development compared to a high proportion of blue light (R40 + B50 + W10). However, plants grown under a high proportion of blue light had a higher chlorophyll index and nitrogen balance index (NBI) than under dominant red light treatments. Our study indicates the significant potential of fluorescence-based sensors in photobiology research as well as in the production of leafy herbs under LED lights.

References

  1. Agati, G., Tuccio, L., Kusznierewicz, B., Chmiel, T., Bartoszek, A., Kowalski, A., Grzegorzewska, M., Kosson R., Kaniszewski S. (2016). Nondestructive optical sensing of flavonols and chlorophyll in white head cabbage (Brassica oleracea L. var. capitata subvar. alba) grown under different nitrogen regimens. J. Agric. Food Chem., 64(1), 85–94. DOI: 10.1021/acs.jafc.5b04962
  2. Ahlman, L., Bånkestad, D., Wik, T. (2017). Using chlorophyll a fluorescence gains to optimize LED light spectrum for short term photosynthesis. Comput. Electron. Agric., 142, 224–234.
  3. Bantis, F., Ouzounis, T., Radoglou, K. (2016). Artificial LED lighting enhances growth characteristics and total phenolic content of Ocimum basilicum, but variably affects transplant success. Sci. Hortic., 198, 277–283. DOI: 10.1016/ j.scienta.2015.11.014
  4. Bantis, F., Smirnakou, S., Ouzounis, T., Koukounaras, A., Ntagkas, N., Radoglou, K. (2018). Current status and recent achievements in the field of horticulture with the use of light-emitting diodes (LEDs). Sci. Hortic., 235, 437–451. DOI: 10.1016/j.scienta.2018.02.058
  5. Cartelat, A., Cerovic, Z.G., Goulas, Y., Meyer, S., Lelarge, C., Prioul, J.-L. Barbottin, A., Jeuffroy, M.-H., Gate, P., Agati, G., Moya, I. (2005). Optically assessed contents of leaf polyphenolics and chlorophyll as indicators of nitrogen deficiency in wheat (Triticum aestivum L.). Field Crops Res., 91, 35–49. DOI: 101016/j.fcr.204.05.002
  6. Carvalho, S.D., Schwieterman, M.L., Abrahan, C.E., Colquhoun, T.A., Folta, K.M. (2016). Light quality dependent changes in morphology, antioxidant capacity, and volatile production in sweet basil (Ocimum basilicum). Front. Plant Sci., 7, 1328. DOI: 10.3389/fpls.2016.01328
  7. Cerovic, Z.G., Masdoumier, G., Ghozlen, N.B., Latouche, G. (2012). A new optical leaf-clip meter for simultaneous non-destructive assessment of leaf chlorophyll and epidermal flavonoids. Physiol. Plant., 146(3), 251–260. DOI: 10.1111/j.1399-3054. 2012.01639.x
  8. Diago, M.P., Rey-Carames, C., Le Moigne, M., Fadaili, E.M., Tardaguila, J., Cerovic, Z.G. (2016). Calibration of non-invasive fluorescence-based sensors for the manual and on-the-go assessment of grapevine vegetative status in the field. Aust. J. Grape Wine R., 22, 438–449. DOI: 10.1111/ajgw.12228
  9. Dong, R., Miao, Y., Wang, X., Chen, Z., Yuan, F., Zhang, W., Li, H. (2020). Estimating plant nitrogen concentration of maize using a leaf fluorescence sensor across growth stages. Remote Sens. ,12(7), 1139. DOI: 10.3390/rs12071139.
  10. Dou, H., Niu, G., Gu, M., Masabi, J.G. (2017). Effects of light quality on growth and phytonutrient accumulation of herbs under controlled environments. Horticulturae, 3(2), 36. DOI: 10.3390/horticulturae3020036
  11. Hasan, M.M., Bashir, T., Ghosh, R., Lee, S.K., Bae, H. (2017). An overview of LEDs’ effects on the production of bioactive compounds and crop quality. Molecules, 22(9), 1420. DOI: 10.3390/molecules22091420
  12. Hogewoning, S.W., Wientjes, E., Douwstra, P., Trouwborst, G., Ieperen, W.V., Croce, R., Harbinson, J. (2012). Photosynthetic quantum yield dynamics: from photosystems to leaves. Plant Cell, 24(5), 1921–1935.
  13. Johkan, M., Shoji, K., Goto, F., Hashida, S., Yoshihara, T. (2010). Blue light-emitting diode light irradiation of seedlings improves seedling quality and growth after transplanting in red leaf lettuce. HortScience, 45(12), 1809–1814.
  14. Kamiya, A., Ikegami, I., Hase, E. (1984). Effects of blue light on the formation of 5-aminolevulinic acid and chlorophyll in cultured tobacco cells. In: Blue light effects in biological systems, H. Senger (ed.), Springer, Berlin−Heidelberg, 335−343. DOI: 10.1007/978-3-642-69767-8-37
  15. Kim, H.H., Goins, G.D., Wheeler, R.M., Sager, J.C. (2004). Green light supplementation for enhanced lettuce growth under red- and blue-light-emitting diodes. HortScience, 39, 1617–1622.
  16. Kofidis, G., Bosabalidis, A.M., Moustakas, M. (2003). Contemporary seasonal and altitudinal variations of leaf structural features in oregano. Ann. Bot., 92(5), 635–645.
  17. Kozai, T., Niu, G., Takagaki, M. (2015). Plant factory: An indoor vertical farming system for efficient quality food production. Academic Press, San Diego, CA. DOI: 10.1016/B978-0-12-801775-3.00007-X
  18. Landi, M., Zivcak, M., Sytar, O., Brestic, M., Allakhverdiev, S.I. (2020). Plasticity of photosynthetic processes and the accumulation of secondary metabolites in plants in response to monochromatic light environments: A review. BBA – Bioenergetics, 1861(2), 148131. DOI: 10.1016/j.bbabio.2019.148131
  19. Lysenko, V.S., Varduny, T.V., Simonovich, E.I., Chugueva, O.I., Chokheli, V.A., Sereda, M.M., Gorbov, S.N., Krasno, V.P., Tarasov, E.K. Sherstneva, I.Y., Kozlova, M. (2014). Far-Red spectrum of second Emerson effect: a study using dual-wavelength pulse amplitude modulation fluorometry. Am. J. Biochem. Biotechnol., 10(4), 234–240.
  20. Li, Q., Kubota, C. (2009). Effects of supplemental light quality on growth and phytochemicals of baby leaf lettuce. Environ. Exp. Bot., 67, 59–64. DOI: 10.1016/j.envexpbot.2009.06.011
  21. Lin, K.-H., Huang, M.-Y., Huang, W.-D., Hsu, M.-H., Yang, Z.-W., Yang, C.-M. (2013). The effects of red, blue, and white light-emitting diodes on the growth, development, and edible quality of hydroponically grown lettuce (Lactuca sativa L. var. capitata). Sci. Hortic., 150, 86–91. DOI: 10.1016/j.scienta.2012.10.002
  22. Matysiak, B., Kowalski, A. (2019). White, blue and red LED lighting on growth, morphology and accumulation of flavonoid compounds in leafy greens. Zemdirbyste-Agriculture, 106(3), 281–286. DOI: 10.13080/z-a.2019.106.036
  23. Miao, Y.X., Wang, X.Z., Gao, L.H., Chen, Q.Y., Qu, M. (2016). Blue light is more essential than red light for maintaining the activities of photosystem II and I and photosynthetic electron transport capacity in cucumber leaves. J. Int. Agric., 15, 87–100.
  24. Morrow, R.C. (2008). LED lighting in horticulture. HortScience, 43(7), 1947–1950.
  25. Muneer, S., Kim, E.J., Park, J.S., Lee, J.H. (2014). Influence of green, red and blue light emitting diodes on multiprotein complex proteins and photosynthetic activity under different light intensities in lettuce leaves (Lactuca sativa L.). Int. J. Mol. Sci., 15, 4657–4670.
  26. Murillo-Amador, B., Morales-Prado, L.E., Troyo-Diéguez, E., Córdoba-Matson, M.V., Hernández-Montiel, L.G., Rueda-Puente, E., Nieto-Garibay, A. (2015). Changing environmental conditions and applying organic fertilizers in Origanum vulgare L. Front. Plant Sci., 6(549). DOI: 10.3389/fpls.2015.00549
  27. Naznin, M., Lefsrud, M., Gravel, V., Hao, X. (2016). Different ratios of red and blue LED light effects on coriander productivity and antioxidant properties. Proceedings of the VIII International Symposium on Light in Horticulture, East Lansing, USA, pp. 223–230.
  28. Olle, M., Viršile, A. 2013. The effects of light-emitting diodes on greenhouse plant growth and quality. Agr. Food Sci., 22(2), 223–234.
  29. Ouzounis, T., Razi Parjikolaei, B., Fretté, X., Rosenqvist, E., Ottosen, C.O. (2015). Predawn and high intensity application of supplemental blue light decreases the quantum yield of PSII and enhances the amount of phenolic acids, flavonoids, and pigments in Lactuca sativa. Front. Plant Sci., 6, 1–14. DOI: 10.3389/fpls.2015.00019
  30. Padilla, F.M., Peña-Fleitas, M.T., Gallardo, M., Thompson, R.B. (2015). Proximal optical sensing of cucumber N status using chlorophyll fluorescence indices. Eur. J. Agron., 73, 83–97.
  31. Piovene, C., Orsini, F., Bosi, S., Sanoubar, R., Bregola, V., Dinelli, G., Gianquinto, G. (2015). Optimal red:blue ratio in LED lighting for nutraceutical indoor horticulture. Sci. Hortic., 193, 202–208. DOI: 10.1016/j.scientia.2015.07.015
  32. Stutte, G.W. (2015). Commercial transition to LEDs: a pathway to high-value products. HortScience, 50, 1297–1300.
  33. Tremblay, N., Wang, Z., Cerovic, Z. (2012). Sensing crop nitrogen status with fuorescence indicators. A review. Agron. Sustain. Dev., 32, 451–464.
  34. Wang, X.Y., Xu, X.M., Cui, J. (2015). The importance of blue light for leaf area expansion, development of photosynthetic apparatus, and chloroplast ultrastructure of Cucumis sativus grown under weak light. Photosynthetica, 53, 213–222.
  35. Wang, J., Lu, W., Tong, Y., Yang, Q. (2016). Leaf morphology, photosynthetic performance, chlorophyll fluorescence, stomatal development of lettuce (Lactuca sativa L.) exposed to different ratios of red light to blue light. Front. Plant Sci., 7, 250. DOI: 10.3389/fpls.2016.00250
  36. Wojciechowska, R., Długosz-Grochowska, O., Kołton, A., Żupnik, M. (2015). Effects of LED supplemental lighting on yield and some quality parameters of lamb’s lettuce grown in two winter cycles. Sci. Hortic., 187, 80–86.
  37. Walters, K.J., Currey, C.J. (2019). Growth and development of basil species in response to temperature. HortScience, 54(11), 1915–1920. DOI: 10.21273/HORTSCI12976-18
  38. Yang, L.Y., Wang, L.T., Ma, J.H., Ma, E.D., Li, J.Y., Gong, M. (2017). Effects of light quality on growth and development, photosynthetic characteristics and content of carbohydrates in tobacco (Nicotiana tabacum L.) plants. Photosynthetica, 55(3), 467–477.
  39. Yorio, N.C., Goins, G.D., Kagie, H.R., Wheeler, R.M., Sager, J.C. (2001). Improving spinach, radish, and lettuce growth under red light-emitting diodes (LEDs) with blue light supplementation. HortScience, 36(2), 380–383.
  40. Zheng, L., Van Labeke, M.K. (2017). Long-term effects of red- and blue-light emitting diodes on leaf anatomy and photosynthetic efficiency of three ornamental pot plants. Front. Plant Sci., 8, 917. DOI: 10.3389/fpls.2017.00917

Downloads

Download data is not yet available.

Similar Articles

<< < 42 43 44 45 46 47 48 49 50 51 > >> 

You may also start an advanced similarity search for this article.