Skip to main navigation menu Skip to main content Skip to site footer

Vol. 22 No. 2 (2023)

Articles

Determination of antioxidant activity and phenolic and flavonoid content of Ocimum basilicum L. callus cultures obtained by different plant growth regulators

DOI: https://doi.org/10.24326/asphc.2023.1661
Submitted: May 23, 2020
Published: 2023-04-28

Abstract

In this study, binary combinations of five plant growth regulators (PGR) were used for the cultivation of Ocimum basilicum L. calluses. Antioxidant properties, phenolic and flavonoid contents of O. basilicum L. calluses were determined by keeping the concentrations and solvents of PGR constant.The total phenolic content of ethanol extracts of O. basilicum L. calluses was between 1.044 ±0.188 and 0.417 ±0.049 mg of GAE/g; total phenolic content of methanol extracts was between 2.547 ±0.110 and 0.701 ±0.095 mg of GAE/g. The total flavonoid content of ethanol extracts was between 2.058 ±0.122 and 0.446 ±0.063 mg of quercetin/g, whereas the total flavonoid content of methanol extracts was between 3.010 ±0.336 and 0.341 ±0.041 mg of quercetin/g. The antioxidant content of ethanol extracts was between 2.826 ±0.141 and 5.736 ±0.201 mmol/g of Trolox equivalent antioxidant capacity (TEAC) and the antioxidant content of methanol extracts was between 4.186 ±0.394 and 1.050 ±0.211 mmol/g of TEAC.

References

  1. Adom, K.K., Liu, R.H. (2002). Antioxidant activity of grains. J. Agric. Food Chem., 50(21), 6182–6187. https://doi.org/10.1021/jf0205099 DOI: https://doi.org/10.1021/jf0205099
  2. Bors, W., Heller, W., Michel, C., Saran, M. (1990). Flavonoids as antioxidants: Determination of radical-scavenging efficiencies. In: Methods in enzymology. Vol. 186. Packer, L., Glazer, A.N. (eds). Academic Press, USA, pp. 343–355. https://doi.org/10.1016/0076-6879(90)86128-i DOI: https://doi.org/10.1016/0076-6879(90)86128-I
  3. Bursal, E. (2009). Determination of antioxidant and antiradical activities of kiwi fruit (Actinidia deliciosa), purification and characterization of carbonic anhydrase enzyme. PhD thesis, Atatürk University Institute of Science, Erzurum.
  4. Chandrasekara, A., Shahidi, F. (2010). Inhibitory activities of soluble and bound millet seed phenolics on free radicals and reactive oxygen species. J. Agric. Food Chem., 59(1), 428–436. https://doi.org/10.1021/jf103896z DOI: https://doi.org/10.1021/jf103896z
  5. Çelebi, Ç. (2010). [Phenolic distribution of basil (Ocimum basilicum L.) and determination of antioxidant activity]. MSc thesis, Ankara University Institute of Science, Ankara [in Turkish].
  6. Formica, J.V., Regelson, W. (1995). Review of the biology of quercetin and related
  7. bioflavonoids. Food Chem. Toxicol., 33(12), 1061–1080. https://doi.org/10.1016/0278-6915(95)00077-1 DOI: https://doi.org/10.1016/0278-6915(95)00077-1
  8. Giri, L., Dhyani, P., Rawat, S., Bhatt, I.D., Nandi, S.K., Rawal, R.S., Pande, V.
  9. (2012). In vitro production of phenolic compounds and antioxidant activity in
  10. callus suspension cultures of Habenaria edgeworthii: a rare Himalayan medicinal orchid. Ind. Crops Prod., 39(1), 1–6. http://dx.doi.org/10.1016/j.indcrop.2012.01.024 DOI: https://doi.org/10.1016/j.indcrop.2012.01.024
  11. Grzegorczyk, I., Matkowski, A., Wysokinska, H. (2007). Antioxidant activity of extracts from in vitro cultures of Salvia officinalis L.. Food Chem., 104(2), 536–541. DOI: https://doi.org/10.1016/j.foodchem.2006.12.003
  12. Juliani, H.R., Simon, J.E. (2002). Antioxidant activity of basil. In: Trends in new crops and new uses. Janick, J., Whipkey, A. (eds). ASHS Press, Alexandria, VA, pp. 575–579.
  13. Kaurinovic, B., Popovic, M., Vlaisavljevic, S., Trivic, S. (2011). antioxidant capacity of Ocimumbasilicum L. and Origanum vulgare L. extracts. Molecules, 16(9), 7401–7414. https://doi.org/10.3390/molecules16097401
  14. Kim, I.S., Yang, M., Lee, O.H., Kang, S.N. (2011). The antioxidant activity and the
  15. bioactive compound content of Stevia rebaudiana water extracts. LWT-Food
  16. Sci. Technol., 44(5), 1328–1332. https://doi.org/10.3390/molecules16097401 DOI: https://doi.org/10.3390/molecules16097401
  17. Lamaison, J.L., Carnat, A., Petitjean-Freytet, C. (1990). [Tannin content and inhibiting activity of elastase in Rosaceae]. Ann. Pharm. Fr., 48(6), 335–340 [in French].
  18. Liyana-Pathirana, C., Dexter, J., Shahidi, F. (2006). Antioxidant properties of wheat as affected by pearling. J. Agric. Food Chem., 54(17), 6177–6184. https://doi.org/10.1021/jf060664d DOI: https://doi.org/10.1021/jf060664d
  19. Mabrouki, H., Duarte, C.M.M., Akretche, D.E. (2018). Estimation of total phenolic contents and in vitro antioxidant and antimicrobial activities of various solvent extracts of Melissa officinalis L. Arab. J. Sci. Eng., 43, 3349–3357. https://doi.org/10.1007/s13369-017-3000-6 DOI: https://doi.org/10.1007/s13369-017-3000-6
  20. Madhujith, T., Shahidi, F. (2007). Antioxidative and antiproliferative properties of selected barley (Hordeum vulgarae L.) cultivars and their potential for inhibition of low-density lipoprotein (LDL) cholesterol oxidation. J. Agric. Food Chem., 55(13), 5018–5024. https://doi.org/10.1021/jf070072a DOI: https://doi.org/10.1021/jf070072a
  21. Murashige, T., Skoog, F. (1962). A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol. Plant., 15(3), 473–497. https://doi.org/10.1111/j.1399-3054.1962.tb08052.x DOI: https://doi.org/10.1111/j.1399-3054.1962.tb08052.x
  22. Phippen, W.B., Simon J.E. (2000). Shoot regeneration of young leaf explants from basil (Ocimum basilicum L.). In Vitro Cell. Dev. Biol.-Plant, 36(4), 250–254. https://doi.org/10.1007/s11627-000-0046-y DOI: https://doi.org/10.1007/s11627-000-0046-y
  23. Ptittin, E.A. (1987). Centaurea thracica (Janka) Hayek and Centaurea pichleri boiss. subsp. Pichleri flavonoids. PhD thesis, Anadolu University, Institute of Health Sciences, Eskişehir.
  24. Rice-Evans, C.A., Miller, N.J., Paganga, G. (1996). Structure-antioxidant activity relationships of flavonoids and phenolic acid. Free Radic. Biol. Med., 20(7), 933–956. https://doi.org/10.1016/0891-5849(95)02227-9 DOI: https://doi.org/10.1016/0891-5849(95)02227-9
  25. Rice-Evans, C., Miller, N., Paganga, G. (1997). Antioxidant properties of phenolic compounds. Trends Plant Sci., 2(4), 152–159. https://doi.org/10.1016/S1360-1385(97)01018-2 DOI: https://doi.org/10.1016/S1360-1385(97)01018-2
  26. Scalbert, A., Williamson, G. (2000). Dietary ıntake and bioavailability of polyphenols. J. Nutrition, 130(8), 2073–2085. https://doi.org/10.1093/jn/130.8.2073S DOI: https://doi.org/10.1093/jn/130.8.2073S
  27. Simon, J.E., Quinn, J., Murray, R.G. (1990). Basil: a source of essential oils. In: Advances in New Crops. Janick, J., Simon J.E. (eds). Timber Press, Portland, 484–489.
  28. Singleton, V.L., Rossi, J.A. (1965). Colorimetry of total phenolics with phosphomolybdic phosphotungstic acid reagents. Am. J. Enol. Viticul., 16(3), 144–158. DOI: https://doi.org/10.5344/ajev.1965.16.3.144
  29. Shahidi, F., Zhong, Y. (2007). Measurement of antioxidant activity in food and biological systems. Antiox. Measur. Appl., 956, 36–66. htpps://doi.org/10.1021/bk-2007-0956.ch004 DOI: https://doi.org/10.1021/bk-2007-0956.ch004
  30. Yeşil-Çeliktaş, O., Nartop, P., Gürel, A., Bedir, E., Vardar-Sukan, F. (2007). Determination of phenolic content and antioxidant activity of extracts obtained from Rosmarinus officinalis cali. J. Plant Physiol., 164(11), 1536–1542. https://doi.org/10.1016/j.jplph.2007.05.013 DOI: https://doi.org/10.1016/j.jplph.2007.05.013

Downloads

Download data is not yet available.

Similar Articles

<< < 13 14 15 16 17 18 19 20 21 22 > >> 

You may also start an advanced similarity search for this article.