Skip to main navigation menu Skip to main content Skip to site footer

Vol. 21 No. 1 (2022)

Articles

Effects of vine water status on vine performance and grape composition of (Vitis vinifera L.) cv. 'Sultani Çekirdeksiz'

DOI: https://doi.org/10.24326/asphc.2022.1.8
Submitted: July 17, 2020
Published: 2022-02-28

Abstract

Drought caused by climate change increased the relevance of irrigation management in viticulture. In order to regulate irrigation strategies for Vitis vinifera L., their influences on vine performance, yield and quality attributes need to be understood. This study evaluates the effects of different irrigation schedulings on vine performance and grape composition in a vineyard of cv. ‘Sultani Çekirdeksiz’ (Sultana clone, H5) during three consecutive years (2015–2017). Three irrigation treatments were assayed: (i) full irrigation (FI), soil water content was completed to field capacity within one week intervals; (ii) DI65, applying 65% water of FI and (iii) DI35, applying 35% water of FI. Water stress caused by the deficit irrigation treatments limited vine performance in terms of vegetative development and yield. The highest phenolic content, antioxidant capacity and total flavonoid accumulation were obtained under DI35, although this treatment had lowest yield. In conclusion, DI65 (moderate stress) might result in a more balanced yield and grape quality attributes in comparison with FI and DI35.

References

  1. Bahar, E., Carbonneau, A., Korkutal, I. (2011). The effect of extreme water stress on leaf drying limits and possibilities of recovering in three grapevine (Vitis vinifera L.) cultivars. Afr. J. Agric. Res. 6(5), 1151–1160. https://doi.org/10.5897/AJAR11.003
  2. Bahar, E., Korkutal, İ., Öner, H. (2018). Cabernet–Sauvignon Üzüm Çeşidinde Farklı Kültürel İşlemlerin Yaprak Su Potansiyelleri Değişimleri Üzerine Etkileri [Effects of different cultural practices on leaf water potentials in cv. Cabernet–Sauvignon]. Bahçe 47 (Special Ed. 1), 201–208 [in Turkish]. DOI: https://doi.org/10.15316/SJAFS.2018.56
  3. Baydar, N.G., Özkan, G., Yaşar, S. (2007). Evaluation of the antiradical and antioxidant potential of grape extracts. Food Control 18(9), 1131–1136. https://doi.org/10.1016/j.foodcont.2006.06.011 DOI: https://doi.org/10.1016/j.foodcont.2006.06.011
  4. Buesa, I., Pérez, D., Castel, J., Intrigliolo, D.S., Castel, J.R. (2017). Effect of deficit irrigation on vine performance and grape composition of Vitis vinifera L. cv. Muscat of Alexandria. Austral. J. Grape Wine Res. 23(2), 251–259. https://doi.org/10.1111/ajgw.12280 DOI: https://doi.org/10.1111/ajgw.12280
  5. Cancela, J.J., Trigo-Córdoba, E., Martínez, E.M., Rey, B.J., Bouzas-Cid, Y., Fandiño, M., Mirás-Avalos, J.M. (2016). Effects of climate variability on irrigation scheduling in white varieties of Vitis vinifera (L.) of NW Spain. Agric. Water Manag. 170, 99–109. https://doi.org/10.1016/j.agwat.2016.01.004 DOI: https://doi.org/10.1016/j.agwat.2016.01.004
  6. Carbonneau, A. (1998). Aspects qualitatifs. In: Proceedings from 17th World Congress of Vine and Wine, Bratislava. Traite d’irrigation, Tiercelin JR, Lavoisier Tec et Doc ed., 1011.
  7. Conesa, M.R., de la Rosa, J.M., Artés-Hernández, F., Dodd, I.C., Domingo, R., Pérez-Pastor, A. (2014). Long-term impact of deficit irrigation on the physical quality of berries in ‘Crimson Seedless’ table grapes. J. Sci. Food Agric. 95(12), 2510–2520. https://doi.org/10.1002/jsfa.6983 DOI: https://doi.org/10.1002/jsfa.6983
  8. Cooley, N.M., Clingeleffer, P.R., Walker, R.R. (2017). Effect of water deficits and season on berry development and composition of Cabernet Sauvignon (Vitis vinifera L.) grown in a hot climate. Austral. J. Grape Wine Res., 23(2), 260–272. https://doi.org/10.1111/ajgw.12274 DOI: https://doi.org/10.1111/ajgw.12274
  9. Costa, J.M., Vaz, M., Escalona, J., Egipto, R., Lopes, C., Medrano, H., Chaves, M.M. (2016). Modern viticulture in southern Europe: Vulnerabilities and strategies for adaptation to water scarcity. Agric. Water Manag. 164, 5–18. https://doi.org/10.1016/j.agwat.2015.08.021 DOI: https://doi.org/10.1016/j.agwat.2015.08.021
  10. Çolak, Y.B., Yazar, A. (2017). Evaluation of crop water stress index on Royal table grape variety under partial root drying and conventional deficit irrigation regimes in the Mediterranean Region. Sci. Hortic. 224, 384–394. https://doi.org/10.1016/j.scienta.2017.06.032 DOI: https://doi.org/10.1016/j.scienta.2017.06.032
  11. Faci, J.M., Blanco, O., Medina, E.T., Martínez-Cob, A. (2014). Effect of post veraison regulated deficit irrigation in production and berry quality of Autumn Royal and Crimson table grape cultivars. Agric. Water Manag. 134, 73–83. https://doi.org/10.1016/j.agwat.2013.11.009 DOI: https://doi.org/10.1016/j.agwat.2013.11.009
  12. Fraga, H., García de Cortázar Atauri, I., Santos, J.A. (2018). Viticultural irrigation demands under climate change scenarios in Portugal. Agric. Water Manag. 196(C), 66–74. https://doi.org/10.1016/j.agwat.2017.10.023 DOI: https://doi.org/10.1016/j.agwat.2017.10.023
  13. Intrigliolo, D.S., Lizama, V., García-Esparza, M.J., Abrisqueta, I., Álvarez, I. (2015). Effects of post-veraison irrigation regime on Cabernet Sauvignon grapevines in Valencia, Spain: Yield and grape composition. Agric. Water Manag., 170(C), 110–119. https://doi.org/10.1016/j.agwat.2015.10.020 DOI: https://doi.org/10.1016/j.agwat.2015.10.020
  14. Jones, T.H., Cullis, B.R., Clingeleffer, P.R., Rühl, E.H. (2009). Effects of novel hybrid and traditional rootstocks on vigour and yield components of Shiraz grapevines. Austral. J. Grape Wine Res., 15(3), 284–292. https://doi.org/10.1111/j.1755-0238.2009.00061.x DOI: https://doi.org/10.1111/j.1755-0238.2009.00061.x
  15. Jones, G.V., Reid, R., Vilks, A. (2012). Climate, grapes and wine: structure and suitability in a variable and changing climate. In: The Geography of Wine, Dougherty, P. (ed.). Springer, Dordrecht, 109–133. https://doi.org/10.1007/978-94-007-0464-0_7 DOI: https://doi.org/10.1007/978-94-007-0464-0_7
  16. Korkutal, İ., Bahar, E., Bayram, S. (2018). Farklı Toprak İşleme ve Yaprak Alma Uygulamalarının Syrah Üzüm Çeşidinde, Sürgün ve Yaprak Özellikleri ile Su Stresi Üzerine Etkileri [Effects of different soil tillages and leaf removal applications on shoot and leaf characteristics and water stress of cv. Syrah]. J. Tekirdag Agric. Fac. 15(1), 1–13 [in Turkish]. DOI: https://doi.org/10.20289/zfdergi.386422
  17. Korkutal, I., Bahar, E., Carbonneau, A. (2019). Effects of early water stress on grapevine (Vitis vinifera L.) growing in cv. Syrah. Appl. Ecol. Environ. Res. 17(1), 463–472. https://doi.org/10.15666/aeer/1701_463472 DOI: https://doi.org/10.15666/aeer/1701_463472
  18. Król, A., Amarowicz, R., Weidner, S. (2014). Changes in the composition of phenolic compounds and antioxidant properties of grapevine roots and leaves (Vitis vinifera L.) under continuous of long-term drought stress. Acta Physiol. Plant., 36(6), 1491–1499. https://doi.org/10.1007/s11738-014-1526-8 DOI: https://doi.org/10.1007/s11738-014-1526-8
  19. Lopes, C.M., Monteiro, A., Machado, J.P., Fernandes, N., Araújo, A. (2008). Cover cropping in a sloping non-irrigated vineyard: II – effects on vegetative growth, yield, berry and wine quality of ‘Cabernet Sauvignon’ grapevines. Ciên. Têcn. Vitivin. 23(1), 37–43.
  20. Lorenz, D.H., Eichhorn, K.W., Bleiholder, H., Klose, R., Meier, U., Weber, E. (1995). Phenological growth stages of the grapevine (Vitis vinifera L. ssp. vinifera) codes and descriptions according to the extended BBCH scale. Austral. J. Grape Wine Res. 1(2), 100–103. https://doi.org/10.1111/j.1755-0238.1995.tb00085.x DOI: https://doi.org/10.1111/j.1755-0238.1995.tb00085.x
  21. Mirás-Avalos, J.M., Intrigliolo, D.S. (2017). Grape composition under abiotic constrains: Water stress and salinity. Front. Plant Sci. 8, 851. https://doi.org/10.3389/fpls.2017.00851 DOI: https://doi.org/10.3389/fpls.2017.00851
  22. Munitz, S., Netzer, Y., Schwartz, A. (2016). Sustained and regulated deficit irrigation of field-grown Merlot grapevines. Austral. J. Grape Wine Res. 23(1), 87–94. https://doi.org/10.1111/ajgw.12241 DOI: https://doi.org/10.1111/ajgw.12241
  23. Nascimento, N.C. Fett-Neto, A.G. (2010). Plant secondary metabolism and challenges in modifying its operation: an overview. Methods Mol. Biol., 643, 1–13. https://doi.org/10.1007/978-1-60761-723-5_1 DOI: https://doi.org/10.1007/978-1-60761-723-5_1
  24. OIV, (1990). Des vins et des mouts. Office Internationale de la Vigne et du Vin, Paris, France, 179.
  25. Permanhani, M., Costa, J.M., Conceição, M.A.F., de Souza, R.T., Vasconcellos, M.A.S., Chaves, M.M. (2016). Deficit irrigation in table grape: eco-physiological basis and potential use to save water and improve quality. Theor. Exp. Plant Physiol., 28(1), 85–108. https://doi.org/10.1007/s40626-016-0063-9 DOI: https://doi.org/10.1007/s40626-016-0063-9
  26. Proffitt, T., Campbell-Clause, J. (2011). Irrigation management for table grapes in a drying environment. Australian Government, Grape Wine Research Develompent Corporations (GWRDC), Australia, 19.
  27. Romero, P., Gil-Muñoz, R., del Amor, F.M., Valdés, E., Fernández, J.I., Martinez-Cutillas, A. (2013). Regulated deficit irrigation based upon optimum water status improves phenolic composition in Monastrell grapes and wines. Agric. Water Manag. 121, 85–101. https://doi.org/10.1016/j.agwat.2013.01.007 DOI: https://doi.org/10.1016/j.agwat.2013.01.007
  28. Romero, P., Pérez-Pérez, J.G., del Amor, F.M., Martinez-Cutillas, A., Dodd, I.C., Botía, P. (2014). Partial root zone drying exerts different physiological responses on field-grown grapevine (Vitis vinifera cv. Monastrell) in comparison to regulated deficit irrigation. Funct. Plant Biol. 41(11), 1087–1106. https://doi.org/10.1071/FP13276 DOI: https://doi.org/10.1071/FP13276
  29. Santos, J.A., Fraga, H., Malheiro, A.C., Moutinho-Pereira, J., Dinis, L.T., Correia, C., Moriondo, M., Leolini, L., Dibari, C., Costafreda-Aumedes, S., Kartschall, T., Menz, C., Molitor, D., Junk, J., Beyer, M., Schultz, H.R. (2020). A review of the potential climate change impacts and adaptation options for European viticulture. Appl. Sci., 10(9), 3092. https://doi.org/10.3390/app10093092 DOI: https://doi.org/10.3390/app10093092
  30. Savoi, S., Wong, D.C.J., Arapitsas, P., Miculan, M., Bucchetti, B., Peterlunger, E., Fait, A., Mattivi, F., Castellarin, S.D. (2016). Transcriptome and metabolite profiling reveals that prolonged drought modulates the phenylpropanoid and terpenoid pathway in white grapes (Vitis vinifera L.). BMC Plant Biol. 16, 67. https://doi.org/10.1186/s12870-016-0760-1 DOI: https://doi.org/10.1186/s12870-016-0760-1
  31. Schultz, H.R. (2016). Global climate change, sustainability, and some challenges for grape and wine production. J. Wine Econ., 11(1), 181–200. https://doi.org/10.1017/jwe.2015.31 DOI: https://doi.org/10.1017/jwe.2015.31
  32. Shellie, K.C. (2014). Water productivity, yield, and berry composition in sustained versus regulated deficit irrigation of Merlot grapevines. Am. J. Enol. Viticult. 65(2), 197–205. https://doi.org/10.5344/ajev.2014.13112 DOI: https://doi.org/10.5344/ajev.2014.13112
  33. Shellie, K.C., Bowen, P. (2014). Isohydrodynamic behavior in deficit-irrigated Cabernet Sauvignon and Malbec and its relationship between yield and berry composition. Irrigation Sci. 32(2), 87–97. https://doi.org/10.1007/s00271-013-0416-y DOI: https://doi.org/10.1007/s00271-013-0416-y
  34. Soltekin, O., Güler, A., Candemir, A., Altındişli, A., Unal, A. (2019). Response of (Vitis vinifera L.) cv. Fantasy Seedless to water deficit treatments: Phenolic compounds and physiological activities. BIO Web Conf., 15, pp. 5. https://doi.org/10.1051/bioconf/20191501001 DOI: https://doi.org/10.1051/bioconf/20191501001
  35. Soltekin, O., Teker, T., Altındişli, A. (2020). Deficit irrigation strategies in Vitis vinifera L. ‘Crimson Seedless’ table grape: Physiological responses, growth, yield and fruit quality. Acta Hortic. 1276,197–204. https://doi.org/10.17660/ActaHortic.2020.1276.28 DOI: https://doi.org/10.17660/ActaHortic.2020.1276.28
  36. Tzortzakis, N., Chrysargyris, A., Aziz, A. (2020). Adaptive response of a native Mediterranean grapevine cultivar upon short-term exposure to drought and heat stress in the context of climate change. Agronomy, 10(2), 249. https://doi.org/10.3390/agronomy10020249 DOI: https://doi.org/10.3390/agronomy10020249
  37. Ünal, A. (2008). Determination of irrigation schedule and amount of water for application in drip-irrigated vineyard using a class evaporation pan. Adnan Menderes University, Graduate School of Natural and Applied Sciences, Aydın, Turkey, pp. 70.
  38. Williams, L., Baeza, P., Vaughn, P. (2012). Midday measurements of leaf water potential and stomatal conductance are highly correlated with daily water use of Thompson Seedless grapevines. Irrigation Sci. 30(3), 201–212. https://doi.org/10.1007/s00271-011-0276-2 DOI: https://doi.org/10.1007/s00271-011-0276-2
  39. Zufferey, V., Verdenal, T., Dienes, A., Belcher, S., Lorenzini, F., Koestel, C., Gindro, K., Spangenberg, J.E., Viret, O., Spring, J.L. (2018). The impact of plant water status on the gas exchange, berry composition and wine quality of Chasselas grapes in Switzerland. OENO One 52(4), 1–15. https://doi.org/10.20870/oeno-one.2018.52.4.2181 DOI: https://doi.org/10.20870/oeno-one.2018.52.4.2181

Downloads

Download data is not yet available.

Similar Articles

<< < 86 87 88 89 90 91 

You may also start an advanced similarity search for this article.