Skip to main navigation menu Skip to main content Skip to site footer

Vol. 16 No. 6 (2017)

Articles

INCREASING OF SELENIUM CONTENT AND QUALITATIVE PARAMETERS IN GARDEN PEA (Pisum sativum L.) AFTER ITS FOLIAR APPLICATION

Submitted: October 22, 2020
Published: 2017-12-31

Abstract

The presented paper deals with monitoring of the ways of selenium (Se) content increase by foliar biofortification with inorganic Se in two varieties of garden pea Pisum sativum L. (Premium, Ambassador) in the conditions of south Slovakia in 2014–2015. The results of experiments show that treatment of plants with two doses of Se concentration (50 g and 100 g Se ha–1 in the form of a sodium selenate anhydrous solution) at the flowering stage significantly increased the total Se content in the seeds of both varieties. Following the results by the consumption of 25 g of dried seeds of peas or 100 g of fresh pea seeds after the biofortification with 100 g Se ha–1 a recommended daily dose of Se in humans may be covered. The significantly positive influence of Se application on the total polyphenols content (TPC) has been confirmed in the both varieties after application of dosage in 100 g Se ha–1 (52% and 33%). A significant increase in the average value of total antioxidant capacity (TAC by DPPH method) in garden pea var. Ambassador was observed after the application of both doses of Se, in case of Premium variety only after application with a 100 g Se ha–1. Significantly increasing level of TAC by PCL (photochemiluminescence) method was found out only in case of var. Premium.

References

Alfthan, G., Eurola, M., Ekholm, P., Venäläinen, E.R., Root, T., Korkalainen, K., Hartikainen, H., Salminen, P., Hietaniemi, V., Aspila, P., Aro, A., for the Selenium Working Group (2015). Effects of nationwide addition of selenium to fertilizers on foods, and animal and human health in Finland: From deficiency to optimal selenium status of the population. J. Trace Elem. Med. Biol., 31, 142–147.
Amarakoon, D., Thavarajah, D., Gupta, D., Mcphee, K., Desutter, T., Thavarajah, P. (2014). Genetic and environmental variation of seed iron and food matrix factors
of North-Dakota-grown field peas (Pisum sativum L.). J. Food Compos. Anal., 37, 67–74.
Ardebili, Z.O., Ardebili, N.O., Jalili, S., Safiallah, S. (2015). The modified qualities of basil plants by selenium and/or ascorbic acid. Turk. J. Bot., 39, 401–407 c.
Aspila, P. (2005). History of selenium supplemented fertilization in Finland. In: Proceedings, Twenty Years of Selenium Fertilization, 8 – 9 September 2005, Helsinki,
Finland, 8–13.
Bañuelos, G.S., Lin, Z.Q., Yin, X. (2013). Selenium in the Environment and Human Health. The Netherlands: CRC Press/Balkema, 248.
Barátová, S., Mezeyová, I., Hegedűsová, A., Andrejiová, A. (2015). Impact of biofortification, variety and cutting on chosen qualitative characteristic of basil (Ocimum basilicum L.). Acta Fytotech. Zootech., 18, 71–75.
Bartoli, C.G., Gomez, F., Gergoff, G., Guiamet, J.J., Puntarulo S. (2005). Up-regulation of the mitochondrial alternative oxidase pathway enhances photosynthetic
electron transport under drought conditions. J. Exp. Bot., 56, 1269–1276.
Brand-Williams, W., Cuvelier, M.E., Berset, C. (1995). Use of a free radical method to evaluate antioxidant activity. LWT – Food Sci. Technol., 28, 25–30.
Bujdosó, G., Kónya, É., Berki, M., Nagy-Gasztonyi, M., Bartha-Szügyi, K., Marton, B., Izsépi, F., Adányi, N. (2016). Fatty acid composition, oxidative stability, and
antioxidant properties of some Hungarian and other Persian walnut cultivars. Turk. J. Agric. For., 40, 160–168.
Carey, A.M., Lombi, E., Donner, E., de Jonge, M.D., Punshon, T., Jackson, B.P., Guerinot, M.L., Price, A.H., Meharg, A.A. (2012). A review of recent developments in the speciation and location of arsenic and selenium in rice grain. Anal. Bioanal. Chem., 402, 3275–3286.
Ducsay, L., Ložek, O., Varga, L., Lošák, T. (2006). Effects of winter wheat supplementation with selenium. Chem. Listy, 100, 519–521.
Ducsay, L., Ložek, O., Varga, L. (2009). The influence of selenium soil application on its content in spring wheat. Plant Soil Environ., 55, 80–84.
Elmadfa, I. (2009). European Nutrition and Health Report. Forum Nutr. Basel, Austria. Karger, 62, 1–412.
Fratianni, F., Cardinalea, F., Cozzolinoa, A., Granesea, T., Albanese, D., Matteo, M., Zaccardelli, M., Coppola, R., Nazzaro, F. (2014). Polyphenol composition and antioxidant activity of different grass pea (Lathyrus sativus), lentils (Lens culinaris), and chickpea (Cicer arietinum) ecotypes of the Campania region (Southern
Italy). J. Funct. Foods, 7, 551–557.
Gajewska, E., Drobik, D., Wielanek, M., Sekulska-Nalewajko, J., Gocławski, J., Mazur, J., Skłodowska, M. (2013). Alleviation of nickel toxicity in wheat (Triticum aestivum L.) seedlings by selenium supplementation. Biological Lett., 50, 63–76.
Germ, M., Pongrac, P., Regvar, M., Vogel-Mikuš, K., Stibilj, V., Jaćimović, R., Kreft, I. (2013). Impact of double Zn and Se biofortification of wheat plants on the element concentrations in the grain. Plant Soil Environ., 59, 316–321.
Giacosa, A., Faliva, M.A., Perna, S., Minoia, C., Ronchi, A., Rondanelli, M. (2014). Selenium fortification of an italian rice cultivar via foliar fertilization with sodium
selenate and its effects on human serum selenium levels and on erythrocyte glutathione peroxidase activity. Nutrients, 6, 1251–1261.
Golubkina, N.A. (2016). Prospects of onion (Allium cepa L.) fertilization by selenium. Mini-review. Trace Elem. Med. (Moscow), 17, 4–9.
Gündoğdu, M, Kan, T., Canan, I. (2016). Bioactive and antioxidant characteristics of blackberry cultivars from East Anatolia. Turk. J. Agric. For., 40, 344–351.
Halvorsen, B.L., Holte, K., Myhrstad, M.C.W., Barikmo, I., Hvattum, E., Remberg, S.F., Wold, A.B., Haffner, K., Baugerød, H., Andersen, L.F., Moskaug, J.Ø., Jacobs,
D.R. Jr., Blomhoff, R. (2002). A systematic screening of total antioxidants in dietary plants. J. Nutr., 132, 461–471.
Han, H., Baik, B.K. (2008). Antioxidant activity and phenolic content of lentils (Lens culinaris), chickpeas (Cicer arietinum L.), peas (Pisum sativum L.) and soybeans
(Glycine max), and their quantitative changes during processing. Int. J. Food Sci. Technol., 43, 1971–1978.
Hasanuzzaman, M., Hossain, M.A., Fujita, M. (2012). Exogenous selenium pretreatment protects rapeseed seedlings from cadmium-induced oxidative stress by
upregulating antioxidant defense and methylglyoxal detoxification systems. Biol. Trace Elem. Res., 149, 248–261.
Haug, A., Graham, R.D., Christophersen, O.A, Lyons, G.H. (2007). How to use the world’s scarce selenium resources efficiently to increase the selenium concentration
in food. Microb. Ecol. Health Dis., 19, 209–228.
Hegedűs, O., Hegedűsová, A., Iivičičová, A., Vargová, A. (2005). Increase in the selenium content of the protein fraction of the seeds of garden pea (Pisum sativum L.)
by the addition of selenium salts to the soil substrate. Bull. Food Res., 44, 249–259.
Hegedűs, O., Hegedűsová, A., Šimková, S., Pavlík, V., Jomová, K. (2008). Evaluation of the ET-AAS and HG-AAS methods of selenium determination in vegetables.
J. Biochem. Biophys. Methods, 70(6), 1287–1291.
Hegedűs, O., Hegedűsová, A., Jakabová, S., Valšíková, M., Vargová, A., Tóth, T. (2010). Changes in selenium content during canning of vegetables. Potravinarstvo®
Sci. J. Food Ind., 4, 281–290.
Hegedűsová, A., Mezeyová, I., Timoracká, M., Šlosár, M., Musilová, J., Juríková, T. (2015). Total polyphenol content and antioxidant capacity changes in dependence
on chosen garden pea varieties. Potravinarstvo® Sci. J. Food Ind., 9, 1–8.
Jiang, Y., Zeng, Z.H., Bu, Y., Ren, C.Z., Li, J.Z., Han, J.J., Tao, C., Zhang, K., Wang, X.X., Lu, G.X., Li, Y.J., Hu, Y.G. (2015). Effects of selenium fertilizer on grain yield, Se uptake and distribution in common buckwheat (Fagopyrum esculentum Moench). Plant Soil Environ., 61, 371–377.
Kavalcová, P., Bystrická, J., Trebichalský, P., Volnová, B., Kopernická, M. (2014a). The influence of selenium on content of total polyphenols and antioxidant activity of
onion (Allium cepa L.). J. Microbiol. Biotech. Food Sci., 3, 238–240.
Kavalcová, P., Bystrická, J., Tomáš, J., Karovičová, J., Kuchtová, V. (2014b). Evaluation and comparing of the content of total polyphenols and antioxidant activity in onion, garlic and leek. Potravinarstvo® Sci. J. Food Ind., 8, 272–276.
Lachman, J., Proněk, D., Hejtmánková, A., Dudjak, J., Pivec, V., Faitová, K. (2003). Total polyphenol and main flavonoid antioxidants in different onion (Allium cepa L.) varieties. Hortic. Sci. (Prague), 30, 142–147.
Lachman, J., Miholová, D., Pivec, V., Jírů, K., Janovská, D. (2011). Content of phenolic antioxidants and selenium in grain of einkorn (Triticum monococcum), emmer (Triticum dicoccum) and spring wheat (Triticum aestivum) varieties. Plant Soil Environ., 57, 235–243.
Maksimovic, Z., Rsumovic, M., Jovic, V., Kosanovic, M., Jovanovic, T. (1998). Selenium in soil, grass, and human serum in the Zlatibor mountain area (Serbia): geomedical
aspects. J. Environ. Pathol. Toxicol. Oncol., 17(3–4), 221–227.
Merian, E. (1991). Metals and their compouds in the environment. Weinheim VCH Verlagsgesellschaft, 28(5), 3388–3395.
Navarro-Alarcon, M., Cabrera-Vique, C. (2008). Selenium in food and the human body: a review. Sci. Total Environ., 400, 115–141.
Nilsson, J., Stegmark, R., Akesson, B. (2004). Total antioxidant capacity in different pea (Pisum sativum) varieties after blanching and freezing. Food Chem., 86, 501–507.
Nithiyanantham, L.S., Selvakumar, S., Siddhuraju, P. (2012). Total phenolic content and antioxidant activity of two different solvent extracts from raw and processed
legumes, Cicer arietinum L. and Pisum sativum L. J. Food Comp. Anal., 27, 52–60.
Oomah, B.D., Tiger, N., Balasubramanian, P. (2006). Phenolics and antioxidative activities in narrow-leafed lupins (Lupinus angustifolius L.). Plant Foods Hum. Nutr., 61, 91–97.
Oomah, B.D., Blanchard, C., Balasubramanian, P. (2008). Phytic acid, phytase, minerals, and antioxidant activity in Canadian dry bean (Phaseolus vulgaris L.) cultivars.
J. Agric. Food Chem., 56, 11312–11319.
Petchiammal, C., Waheeta, H. (2014). Antioxidant activity of proteins from fifteen varieties of legume seeds commonly consumed in India. Int. J. Pharm. Pharm. Sci., 6, 476–479.
Pilon-Smits, E.A.H., Quinn, C.F. (2010). Selenium Metabolism in Plants. In: Plant Cell Monographs, vol. 17, Cell Biology of Metals and Nutrients, Hell, R., Mendel, R. (eds). Springer-Verlag, Berlin, Heidelberg, 225–241.
Poblaciones, M., Rodrigo, S.M., Santamaría, O. (2013). Evaluation of the potential of peas (Pisum sativum L.) to be used in selenium biofortification programs under
mediterranean conditions. Biol. Trace Elem. Res., 151, 132–137.
Poblaciones, M.J., Santamaría, O., García-White, T., Rodrigo, S.M. (2014). Selenium biofortification in breadmaking wheat under Mediterranean conditions: influence on grain yield and quality parameters. Crop Pasture Sci., 65, 362–369.
Popov, I.N., Lewin, G. (1994). Photochemiluminescent detection of antiradical activity: II. Testing of nonenzymic water-soluble antioxidants. Free Radical Biol. Med., 17, 267–271.
Priyadarsini, K.I., Singh, B.G., Kunwar, A., Prabhu, P., Jain, V.K. (2013). Selenium compounds as antioxidants and radioprotectors. CRC Press, 37–38.
Rahman, M.M., Erskine, W., Materne, M.A., Mcmurray, L.M., Thavarajah, P., Thavarajah, D., Siddique, K.H.M. (2015). Enhancing selenium concentration in lentil (Lens culinaris subsp. culinaris) through foliar application. J. Agr. Sci., 153, 656–665.
Rothery, E. (ed.) (1988). Analytical methods for graphite tube atomizers. Varian Australia Pty Ltd.
Saltzman, A., Birol, E., Bouis, H.E., Boy, E., De Moura, F.F., Islam, Y., Pfeiffer, W. (2013). Biofortification: Progress toward a more nourishing future. Global Food Sec., 2, 9–17.
Shahid, M.A., Balal, R.M., Pervez, M.A., Abbas, T., Aqeel, M.A., Javaid, M.M., Garcia-Sanchez, F. (2014). Exogenous proline and proline-enriched Lolium perenne leaf
extract protects against phytotoxic effects of nickel and salinity in Pisum sativum by altering polyamine metabolism in leaves. Turk. J. Bot., 38, 914–926.
Simojoki, A., Xue, T., Lukkari, K., Pennanen, A., Hartikainen, H. (2003). Allocation of added selenium in lettuce and its impact on roots. Agric. Food Sci. Fin., 12, 155–164.
Smrkolj, P., Germ, M., Kreft, I., Stibilj, V. (2006). Respiratory potential and Se compounds in pea (Pisum sativum L.) plants grown from Se-enriched seeds. J. Exp.
Bot., 57, 3595–3600.
Šlosár, M., Uher, A., Andrejiová, A., Juríková, T. (2016). Selected yield and qualitative parameters of broccoli in dependence on nitrogen, sulfur, and zinc fertilization.
Turk. J. Agric. For., 40, 465–473.
Terry, N., Zayed, A.M., de Souza, M.P., Tarun, A.S. (2000). Selenium in higher plants. Annu. Rev. Plant Physiol., 51, 401–422.
Thiry, C., Ruttens, A., De Temmerman, L., Schneider, Y.J., Pussemier, L. (2012). Current knowledge in species-related bioavailability of selenium in food. Food
Chem., 130, 767–784.
Tian, M., Xu, X., Liu, Y., Xie, L., Pan, S. (2016). Effect of Se treatment on glucosinolate metabolism and healthpromoting compounds in the broccoli sprouts of three
cultivars. Food Chem., 190, 374–380.
Timoracká, M., Vollmannová, A., Bystrická, J. (2010). Polyphenols in chosen species of legume – A Review. Potravinarstvo® Sci. J. Food Ind., 4, 65–72.
Thavarajah, D., Thavarajah, P., Vial, E., Gebhardt, M., Lacher, C., Kumar, S., Combs, G.F. (2015). Will selenium increase lentil (Lens culinaris medik) yield and seed quality? Front. Plant Sci., 6, 356.
Qiuhui, H., Genxing, P., Jianchun, Z. (2000). Effect of fertilization on selenium content of tea and the nutritional function of Se-enriched tea in rats. Plant Soil, 238(1), 91–95.
Viñas, B.R., Barba, L.R., Ngo, J., Gurinovic, M., Novakovic, R., Cavelaars, A., de Groot, L.C., van’t Veer, P., Matthys, C., Majem, L.S. (2011). Projected prevalence of inadequate nutrient intakes in Europe. Ann. Nutr. Metab., 59, 84–95.
Yan, L., Johnson, L.K. (2011). Selenium bioavailability from naturally produced high-selenium peas and oats in selenium-deficient rats. J. Agric. Food Chem., 59,
6305–6311.

Downloads

Download data is not yet available.

Similar Articles

<< < 40 41 42 43 44 45 46 47 48 49 > >> 

You may also start an advanced similarity search for this article.