Skip to main navigation menu Skip to main content Skip to site footer

Vol. 21 No. 4 (2022)

Articles

The effect of silicon and calcium additives on the growth of selected groups of microorganisms in substrate used in soilless cultivation of strawberries

DOI: https://doi.org/10.24326/asphc.2022.4.6
Submitted: April 20, 2021
Published: 2022-08-31

Abstract

The aim of the study was to evaluate the impact of silicon (Si) and calcium (Ca) added to the substrate (perlite
or its mixture with peat) used in soilless strawberry cultivation on the number of different groups of microorganisms in the substrate. Research was conducted on a farm located in southern Poland in which soilless cultivation of strawberries in gutters, under covers, with an irrigation system was carried out. The microbiological analyzes were performed by serial dilution method. The analyzes included determination of the total number of bacteria, actinobacteria, fungi and aerobic atmospheric nitrogen assimilators of the Azotobacter genus. In this work, we showed that the concentration of microorganisms associated with the cultivation substrate may be influenced by the presence of silicon and calcium added to the composition of the substrate. Correlation analysis showed that the addition of Si + Ca to the substrate affects increase in the total number of bacteria in the substrate. The obtained results confirm that the cultivation substrate can be modified in such a way that it is more conducive to the multiplication and survival of bacteria associated with the substrate.

References

  1. Aquilanti, L. Favilli, F., Clementi, F. (2004). Comparison of different strategies for isolation and preliminary identification of Azotobacter from soil samples. Soil Biol. Biochem., 36(9), 147–1483. https://doi.org/10.1016/j.soilbio.2004.04.024 DOI: https://doi.org/10.1016/j.soilbio.2004.04.024
  2. Arancon, N.Q., Edwards, C.A., Bierman, P. (2006). Influences of vermicomposts on field strawberries. Part 2. Effects on soil microbiological and chemical properties. Biores. Technol., 97(6), 831–840. https://doi.org/10.1016/j.biortech.2005.04.016 DOI: https://doi.org/10.1016/j.biortech.2005.04.016
  3. Atlas, R.M., Parks, L.C. (1997). Handbook of Microbiological Media. CRC Press, New York.
  4. Balakhnina, T., Borkowska, A. (2013). Effects of silicon on plant resistance to environmental stresses: review. nt. Agrophys., 27, 225–232. https://doi.org/10.2478/v10247-012-0089-4 DOI: https://doi.org/10.2478/v10247-012-0089-4
  5. Borkowski, J., Felczyńska, A., Górecki, R. (2014). Effect of silicon fertilization on the growth, yield and healthiness of tomato. Zesz. Nauk. Inst. Ogrod., 22, 195–202.
  6. Breza-Boruta, B. (2013). Występowanie drobnoustrojów pektynolitycznych w glebie w systemie ekologicznym i konwencjonalnym. Pol. J. Agron., 15, 32–37.
  7. Campbell, B.J., Polson, S.W., Hanson, T.E., Mack, M.C., Schuur, E.A. (2010). The effect of nutrient deposition on bacterial communities in Arctic tundra soil. Environ. Microbiol., 12(7), 1842–1854. https://doi.org/10.1111/j.1462-2920.2010.02189.x DOI: https://doi.org/10.1111/j.1462-2920.2010.02189.x
  8. Castellanos-Morales, V., Villegas, J., Wendelin, S., Vierheilig, H., Ederc, R., Cárdenas-Navarro, R. (2010). Root colonisation by the arbuscular mycorrhizal fungus Glomus intraradices alters the quality of strawberry fruits (Fragaria × ananassa Duch.) at different nitrogen levels. J. Sci. Food Agric., 90(11), 1774–1782. https://doi.org/10.1002/jsfa.3998 DOI: https://doi.org/10.1002/jsfa.3998
  9. Chen, Y., Xu, Y., Zhou, T., Akkaya, M.S., Wang, L., Li, S., Li, X. (2020). Biocontrol of Fusarium wilt disease in strawberries using bioorganic fertilizer fortified with Bacillus licheniformis X-1 and Bacillus methylotrophicus Z-1. 3 Biotech., 10(2), 80. https://doi.org/10.1007/s13205-020-2060-6 DOI: https://doi.org/10.1007/s13205-020-2060-6
  10. Chobotar’ov, A.I., Hordiienko, A.S., Samchuk, A.I., Kurdysh, I.K. (2010). [Influence of silicon dioxide and saponite on growth of Bacillus subtilis IMV B-7023]. Mikrobiol. Z., 72(4), 33–39. In Ukrainian.
  11. Cucarella, V., Renman, G. (2009). Phosphorus sorption capacity of filter materials used for on-site wastewater treatment determined in batch experiments – a comparative study. J. Environ. Qual., 38(2), 381–392. https://doi.org/10.2134/jeq2008.0192 DOI: https://doi.org/10.2134/jeq2008.0192
  12. De Tender, C., Vandecasteele, B., Verstraeten, B., Ommeslag, S., De Meyer, T., De Visscher, J., Dawyndt, P., Clement, L., Kyndt, T., Debode, J. (2021). Chitin in strawberry cultivation: foliar growth and defense response promotion, but reduced fruit yield and disease resistance by nutrient imbalances. Mol. Plant. Microbe Interact., 34(3), 227–239. https://doi.org/10.1094/MPMI-08-20-0223-R DOI: https://doi.org/10.1094/MPMI-08-20-0223-R
  13. De Tender, C.A., Debode, J., Vandecasteele, B., D’Hose T., Cremelie, P., Haegeman, A., Ruttink, T., Dawyndt, P., Maes, M. (2016). Biological, physicochemical and plant health responses in lettuce and strawberry in soil or peat amended with biochar. Appl. Soil Ecol., 107, 1–12. https://doi.org/10.1016/j.apsoil.2016.05.001 DOI: https://doi.org/10.1016/j.apsoil.2016.05.001
  14. Drobek, M., Cybulska, J., Gałązka, A., Feledyn-Szewczyk, B., Marzec-Grządziel, A., Sas-Paszt, L., Gryta, A., Trzciński, P., Zdunek, A., Frąc, M. (2021). The use of interactions between microorganisms in strawberry cultivation (Fragaria x ananassa Duch.). Front. Plant Sci. 12, 780099. https://doi.org/10.3389/fpls.2021.780099 DOI: https://doi.org/10.3389/fpls.2021.780099
  15. Frey, S.D., Knorr, M., Parrent, J.L., Simpson, R.T. (2004). Chronic nitrogen enrichment affects the structure and function of the soil microbial community in temperate hardwood and pine forests. Forest Ecol. Manag., 196, 159–171. DOI: https://doi.org/10.1016/j.foreco.2004.03.018
  16. Górski, D., Gaj, R., Ulatowska, A., Piszczek, J. (2017). Effect of foliar application of silicon and calcium on yields and technological quality sugar beet. Fragm. Agron., 34(4), 46–58.
  17. Grunert, O., Hernandez-Sanabria, E., Vilchez-Vargas, R., Jauregui, R., Pieper, D.H., Perneel, M., van Labeke, M.-C. Reheul, D., Boon, N. (2016). Mineral and organic growing media have distinct community structure, stability and functionality in soilless culture systems. Sci. Rep., 6, 1–14. https://doi.org/10.1038/srep18837 DOI: https://doi.org/10.1038/srep18837
  18. Jayawardana H.A.R.K., Weerahewa H.L.D., Saparamadu M.D.J.S. (2014). Effect of root or foliar application of soluble silicon on plant growth, fruit quality and anthracnose development of capsicum. Trop. Agric. Res., 26(1), 74–81. http://doi.org/10.4038/tar.v26i1.8073 DOI: https://doi.org/10.4038/tar.v26i1.8073
  19. Jeffrey, L.S.H. (2008). Isolation, characterization and identification of actinomycetes from agriculture soils at Semongok, Sarawak. Afr. J. Biotechnol., 7(20), 3697–3702.
  20. Karunakaran, G., Suriyaprabha, R., Manivasakan, P., Yuvakkumar, R., Rajendran, V., Prabu, P., Kannan, N. (2013). Effect of nanosilica and silicon sources on plant growth promoting rhizobacteria, soil nutrients and maize seed germination. IET Nanobiotechnol. 7(3), 70–77. https://doi.org/10.1049/iet-nbt.2012.0048 DOI: https://doi.org/10.1049/iet-nbt.2012.0048
  21. Kim Y.H., Khan A.L., Waqas M., Shim J.K., Kim D.H., Lee K.Y., Lee I.J. (2014). Silicon application to rice root zone influenced the phytohormonal and antioxidant responses under salinity stress. J. Plant. Growth Regul., 33(2), 137–149. DOI: https://doi.org/10.1007/s00344-013-9356-2
  22. Limmer, C., Drake, H.L. (1995). Non-symbiotic N2-fixation in acidic and pH-neotral forest soils: aerobic and anaerobic differentials. Soil Biol. Biochem., 28(2), 177–183. https://doi.org/10.1016/0038-0717(95)00118-2 DOI: https://doi.org/10.1016/0038-0717(95)00118-2
  23. Martyniuk, S., Księżniak, A., Jończyk, K., Kus, J. (2007). Microbiological characteristics of soil under winter wheat cultivated in ecological and conventional systems. J. Res. App. Agr. Eng., 3, 113–116.
  24. Myśków, W. (1987). Wpływ głębokiej uprawy i zmianowania roślin na właściwości biologiczne gleby. Pam. Puł., 90, 7–23.
  25. Natywa, M., Selwet, M., Maciejewski, T. (2014). Effect of some agrotechnical factors on the number and activity soil microorganisms. Fragm. Agron., 31(2), 56–63.
  26. Niewiadomska, A. (2013). [Assessment of the impact of PRP SOL fertiliser and coinoculation on the process diazotrophy, biological and chemical properties of soil and crop condition under clover and alfalfa cultivation]. Rozpr. Nauk. 462. Poznań, Wyd. UP. In Polish.
  27. Oelze, J. (2000). Respiratory protection of nitrogenase in Azotobacter species: is a widely held hypothesis unequivocally supported by experimental evidence? FEMS Microbiol. Rev., 24(4), 321–333. https://doi.org/10.1111j.1574-6976.2000.tb00545.x DOI: https://doi.org/10.1111/j.1574-6976.2000.tb00545.x
  28. Pascual, J.A., Ceglie, F., Tuzel, Y., Koller, M., Koren, A., Hitchings, R., Tittarelli, F. (2018). Organic substrate for transplant production in organic nurseries. A review. Agron. Sust. Develop., 38, 1–23. https://doi.org/10.1007/s13593-018-0508-4 DOI: https://doi.org/10.1007/s13593-018-0508-4
  29. Pepper, I.L., Gerba, C.P., Brendecke, J.W. (1995). Environmental microbiology: a laboratory manual. Academic Press, San Diego, CA, USA.
  30. Raven, J.A. (2001). Silicon transport at the cell and tissue level. In: Datnoff, L.E., Snyder, G.H., Korndorfer, G.H. (eds.). Silicon in agriculture. Elsevier, Amsterdam, 41–55. DOI: https://doi.org/10.1016/S0928-3420(01)80007-0
  31. Sas-Paszt, L., Sumorok B., Grzyb, Z.S., Głuszek, S., Lisek, A., Derkowska, E., Przybył M., Trzciński, P., Stępień, W., Frąc, M., Górnik, K. (2020). Effect of microbiologically enriched fertilizers on the yielding of strawberry plants in container-based cultivation at different levels of irrigation. J. Res. App. Agr. Eng., 65(1), 21–29. DOI: https://doi.org/10.2478/johr-2021-0005
  32. Savvas, D., Gruda, N. (2018). Application of soilless culture technologies in the modern greenhouse industry – a review. Eur. J. Hortic. Sci., 83(5), 280–293. https://doi.org/10.17660/eJHS.2018/83.5.2 DOI: https://doi.org/10.17660/eJHS.2018/83.5.2
  33. Sinsabaugh, R.L., Gallo, M.E., Lauber, Ch., Waldrop, M.P., Zak, D.R. (2005). Extracelluar enzyme activities and soil organic matter dynamics for northern hardwood forests receiving simulated nitrogen deposition. Biogeochemistry, 75, 201–215. https://doi.org/10.1007/s10533-004-7112-1 DOI: https://doi.org/10.1007/s10533-004-7112-1
  34. Soppelsa, S., Kelderer, M., Casera, C., Bassi, M., Robatscher, P., Matteazzi, A., Andreotti, C. (2019). Foliar applications of biostimulants promote growth, yield and fruit quality of strawberry plants grown under nutrient limitation. Agronomy, 9(9), 1–22. https://doi.org/10.3390/agronomy9090483 DOI: https://doi.org/10.3390/agronomy9090483
  35. Todeschini, V., Lahmidi, N.A., Mazzucco, E., Marsano, F., Gosetti, F., Robotti, E., Bona, E., Massa, N., Bonneau, L., Marengo, E., Wipf, D., Berta, G., Lingua, G. (2018). Impact of beneficial microorganisms on strawberry growth, fruit production, nutritional quality, and volatilome. Front. Plant Sci., 9, 1–22. https://doi.org/10.3389/fpls.2018.01611 DOI: https://doi.org/10.3389/fpls.2018.01611
  36. Umamaheswari, T., Srimeena, N., Vasanthi, N., Cibichakravarthy, B., Anthoniraj, S., Karthikeya, S. (2016). Silica as biologically transmutated source for bacterial growth similar to carbon. Matt. Arch., 2297–9247. https://doi.org/10.19185/matters.201511000005 DOI: https://doi.org/10.19185/matters.201511000005
  37. Vandecasteele, B., Debode, J., Willekens, K., Van Delm, T. (2018). Recycling of P and K in circular horticulture through compost application in sustainable growing media for fertigated strawberry cultivation. Eur. J. Agron., 96, 131–145. DOI: https://doi.org/10.1016/j.eja.2017.12.002
  38. Vasanthi, N., Saleena, L.M., Raj, S.A. (2018). Silica solubilization potential of certain bacterial species in the presence of different silicate minerals. Silicon, 10(2), 267–275. https://link.springer.com/article/10.1007/s12633-016-9438-4 DOI: https://doi.org/10.1007/s12633-016-9438-4
  39. Wainwright, M., Aiwajeeh, K., Grayston, S.J. (1997). Effect of silicic acid and rother silicon compounds on fungal growth in oligotrophic and nutrient-rich media. Mycol. Res., 101, 933–938. https://doi.org/10.1017/S0953756297003560 DOI: https://doi.org/10.1017/S0953756297003560
  40. Wainwright, M., Al-Wajeeh, K., Wickramasinghe, N.C., Narlikar, J.V. (2003). Did silicon aid in the establishment of the first bacterium? Int. J. Astrobiol., 2(3), 227–229. https://doi.org/10.1017/S1473550403001587 DOI: https://doi.org/10.1017/S1473550403001587
  41. Wielgosz, E., Szember, A. (2006). Effect of selected plants on the abundance and activity of soil microorganisms. Annales UMCS, Sec. E, 61, 107–119. DOI: https://doi.org/10.24326/as.2006.1.9
  42. Zargar, S.M., Macha, M.A., Nazir, M., Agrawal, G.K., Rakwal, R. (2012). Silicon: A multitalented micronutrient in OMICS perspective – an update. Curr. Proteom., 9(4), 245–254. https://doi.org/10.2174/157016412805219152 DOI: https://doi.org/10.2174/157016412805219152
  43. Zargar, S.M., Mahajan, R., Bhat, J.A., Nazir, M., Deshmukh, R. (2019). Role of silicon in plant stress tolerance: opportunities to achieve a sustainable cropping system. 3 Biotech., 9(3), 73. https://doi.org/10.1007/s13205-019-1613-z DOI: https://doi.org/10.1007/s13205-019-1613-z
  44. Zargar, S.M., Nazir, M., Agrawal, G.K., Kim, D., Rakwal, R. (2010). Silicon in plant tolerance against environmental stressors: towards crop improvement using omics approaches. Curr. Proteom., 7(2), 135–143. http://dx.doi.org/10.2174/157016410791330507 DOI: https://doi.org/10.2174/157016410791330507

Downloads

Download data is not yet available.

Similar Articles

<< < 5 6 7 8 9 10 11 12 13 14 > >> 

You may also start an advanced similarity search for this article.