Skip to main navigation menu Skip to main content Skip to site footer

Vol. 23 No. 5 (2024)

Articles

Development and application of a model for the automatic evaluation and classification of onions (Allium cepa L.) using a Deep Neural Network (DNN)

DOI: https://doi.org/10.24326/asphc.2024.5337
Submitted: February 7, 2024
Published: 2024-11-30

Abstract

Evaluating onions for size, shape, damage, colour and discolouration is the first and most important step in classifying them for raw material quality, processing and the horticultural and agri-food sectors. Current methods of geometric evaluation and grading of onions involve mechanical and extremely invasive sorting, which causes additional damage, reduces the quality of the raw material and is also labour and time-consuming. As a result, non-invasive evaluation and classification methods that are both fast and accurate are being sought. One such method is digital image analysis, which, when combined with instrumentation and deep neural networks, can fully automate the process. The main aim of this study was the development of a model for the automatic evaluation and classification of onions using a deep convolutional neural network (CNN) model. A fixed-architecture network was built, for which a computational algorithm was developed in Python 3.9 and published at https://github.com/piotrrybacki/onion-CNN.git (accessed on 4 October 2024). The Hyduro F1 onion variety, a hybrid all-purpose variety of the Rijnsburger type, was used to build, teach and test the model. The developed algorithm classified the onion images qualitatively with an accuracy of 91.85%. This classification was based on the geometric parameters of the onion, i.e. diameter, height, transversal and longitudinal circumference, and the estimated area of damage or discolouration of the skin. The root mean square error (MSE) in RGB space varied between 87.99 and 91.24, and the maximum image classification time was 28.98 ms/image. The developed algorithm has a very high utility, as it automates the classification process, reducing its time and labour intensity.

References

  1. Abdulridha, J., Ampatzidis, Y., Kakarla, S.C., Roberts, P. (2020). Detection of target spot and bacterial spot diseases in tomato using UAV-based and benchtop-based hyperspectral imaging techniques. Precision Agric., 21(5), 955–978. https://doi.org/10.1007/s11119-019-09703-4
  2. Alkhadrawi, S., Alzboon, K. (2024). Enhancing Water treatment predictions: a Machine Learning Approach with CNN and Water Wave optimization. Asian J. Civ. Eng., 25, 4683–4696. https://doi.org/10.1007/s42107-024-01073-1
  3. Arfah, J., Purnawansyah, D.H., Sastra, R. (2023). Klasifikasi Penyakit Bawang Merah Menggunakan Naive Bayes dan CNN dengan Fitur GLCM. Indonesian J. Comp. Sci., 12(3). [In Indonesian]. https://doi.org/10.33022/ijcs.v12i3.3236
  4. Arshad, M.S., Sohaib, M., Nadeem, M., Saeed, F., Imran, A., Javed, A., Amjad, Z., Batool, S.M. (2017). Status and trends of nutraceuticals from onion and onion by-products: A critical review. Cogent Food Agric., 3(1), 1280254. https://doi.org/10.1080/23311932.2017.1280254
  5. Bahram‐Parvar, M., Lim, L. (2018). Fresh‐cut onion: a review on processing, health benefits, and shelf‐life. Comprehensive Rev. Food Sci. Food Safety, 17(2), 290–308. https://doi.org/10.1111/1541-4337.12331
  6. Cao, L., Sun, M., Yang, Z., Jiang, D., Yin, D., Duan, Y. (2024) A novel transformer-CNN approach for predicting soil properties from LUCAS Vis-NIR spectral data. Agronomy, 14(9), 1998. https://doi.org/10.3390/agronomy14091998
  7. Deng, L., Du, H., Han, Z. (2017). A carrot sorting system using machine vision technique. Appl. Eng. Agric., 33(2), 149–156. https://doi.org/10.13031/aea.11549
  8. Deng, L., Li, J., Han, Z. (2021). Online defect detection and automatic grading of carrots using computer vision combined with deep learning methods. LWT, 149, 111832. https://doi.org/10.1016/j.lwt.2021.111832
  9. Edith, D.M.J., Dimitry, M.Y., Richard, N.M., Armand, A.B., Léopold, T.N., Nicolas, N.Y. (2018). Effect of drying treatment on nutritional, functional and sensory properties of three varieties of onion powders. J. Food Measur. Character., 12(4), 2905–2915. https://doi.org/10.1007/s11694-018-9906-1
  10. Esteva, A., Kuprel, B., Novoa, R.A., Ko, J., Swetter, S.M., Blau, H.M., Thrun, S. (2017). Dermatologist-level classification of skin cancer with deep neural networks. Nature, 542(7639), 115–118. https://doi.org/10.1038/nature21056
  11. Eurostat (2023). https://ec.europa.eu/eurostat/web/main/data/database [date of access: 10.12.2023].
  12. Fauziah, F., Yakti, B., Prayitno, R., Nurti, T., Azizah, N. (2024). Classify tomato fruit images using Convolutional Neural Network (CNN) Method. CCIT Creative Commun. Innov. Technol. J., 17(1), 59–69. https://doi.org/10.33050/ccit.v17i1.3072
  13. Feng, L., Zan, M., Huang, L., Xu, Z. (2022). A double-step grid-free method for sound source identification using deep learning. Appl. Acoust., 201, 109099. https://doi.org/10.1016/j.apacoust.2022.109099
  14. Franco, M. de O.K., Suarez, W.T., dos Santos, V.B., Resque, I.S. (2021). A novel digital image method for determination of reducing sugars in aged and non-aged cachaças employing a smartphone. Food Chem., 338, 127800. https://doi.org/10.1016/j.foodchem.2020.127800
  15. Fredotović, Ž., Šprung, M., Soldo, B., Ljubenkov, I., Budić-Leto, I., Bilušić, T., Čikeš-Čulić, V., Puizina, J. (2017). Chemical composition and biological activity of Allium cepa L. and Allium × cornutum (Clementi ex Visiani 1842) methanolic extracts. Molecules, 22(3), 448. https://doi.org/10.3390/molecules22030448
  16. Girshick, R., Donahue, J., Darrell, T., Malik, J. (2014). Rich feature hierarchies for accurate object detection and semantic segmentation. 2014 IEEE Conference on Computer Vision and Pattern Recognition, 580–587. https://doi.org/10.1109/CVPR.2014.81
  17. Grinblat, G.L., Uzal, L.C., Larese, M.G., Granitto, P.M. (2016). Deep learning for plant identification using vein morphological patterns. Comp. Electron. Agric., 127, 418–424. https://doi.org/10.1016/j.compag.2016.07.003
  18. Gupta, S., Tolani, V., Davidson, J., Levine, S., Sukthankar, R., Malik, J. (2017). Cognitive mapping and planning for visual navigation. Int. J. Comput. Vis., 128, 1311–1330. https://doi.org/10.1007/s11263-019-01236-7
  19. Induja, M.P., Geetha, R.V. (2018). Antimicrobial activity of Allium cepa against bacteria causing enteric infection. Drug Inv. Tod., 10(12), 2489–2492.
  20. Jean, S., Cho, K., Memisevic, R., Bengio, Y. (2015). On using very large target vocabulary for neural machine translation. Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing (Vol. 1: Long Papers), 1–10. https://doi.org/10.3115/v1/P15-1001
  21. Jermyn, M., Mok, K., Mercier, J., Desroches, J., Pichette, J., Saint-Arnaud, K., Bernstein, L., Guiot, M.C., Petrecca, K., Leblond, F. (2015). Intraoperative brain cancer detection with Raman spectroscopy in humans. Sci. Translat. Med., 7(274). https://doi.org/10.1126/scitranslmed.aaa2384
  22. Khalid, W., Arshad, M.S., Ranjha, M.M.A.N., Różańska, M.B., Irfan, S., Shafique, B., Rahim, M.A., Khalid, M.Z., Abdi, G., Kowalczewski, P.Ł. (2022). Functional constituents of plant-based foods boost immunity against acute and chronic disorders. Open Life Sci., 17(1), 1075–1093. https://doi.org/10.1515/biol-2022-0104
  23. Khandagale, K., Gawande, S. (2019). Genetics of bulb colour variation and flavonoids in onion. J. Hortic. Sci. Biotechnol., 94(4), 522–532. https://doi.org/10.1080/14620316.2018.1543558
  24. Kim, W.S., Lee, D.H., Kim, Y.J. (2020). Machine vision-based automatic disease symptom detection of onion downy mildew. Comp. Electr. Agric., 168, 105099. https://doi.org/10.1016/j.compag.2019.105099
  25. Lante, A., Tinello, F., Mihaylova, D. (2020). Valorization of onion extracts as anti-browning agents. Food Sci. Appl. Biotechnol., 3(1), 16. https://doi.org/10.30721/fsab2020.v3.i1.87
  26. LeCun, Y., Bengio, Y., Hinton, G. (2015). Deep learning. Nature, 521(7553), 436–444. https://doi.org/10.1038/nature14539
  27. Lemley, J., Bazrafkan, S., Corcoran, P. (2017a). Smart Augmentation Learning an Optimal Data Augmentation Strategy. IEEE Access, 5, 5858–5869. https://doi.org/10.1109/ACCESS.2017.2696121
  28. Lemley, J., Bazrafkan, S., Corcoran, P. (2017b). Deep learning for consumer devices and services: Pushing the limits for machine learning, artificial intelligence, and computer vision. IEEE Consum. Electr. Mag., 6(2), 48–56. https://doi.org/10.1109/MCE.2016.2640698
  29. Levine, S., Pastor, P., Krizhevsky, A., Quillen, D. (2016). Learning hand-eye coordination for robotic grasping with deep learning and large-scale data collection, 37, 4–5. https://doi.org/10.1177/0278364917710318
  30. Li, L., Wang, Y., Jin, S., Li, M., Chen, Q., Ning, J., Zhang, Z. (2021). Evaluation of black tea by using smartphone imaging coupled with micro-near-infrared spectrometer. Spectrochim. Acta, A: Molec. Biomolec. Spectroscopy, 246, 118991. https://doi.org/10.1016/j.saa.2020.118991
  31. Li, X., Xiao, J., Zhou, Y., Ye, Y., Lv, N., Wang, X., Wang, S., Gao, S. (2020). Detail retaining convolutional neural network for image denoising. J. Vis. Commun. Image Represent, 71, 102774. https://doi.org/10.1016/j.jvcir.2020.102774
  32. Long, J., Shelhamer, E., Darrell, T. (2015). Fully convolutional networks for semantic segmentation. 2015 IEEE Conf. Comp. Vision Pattern Recogn., 3431–3440. https://doi.org/10.1109/CVPR.2015.7298965
  33. Loredana, L., Giuseppina, A., Filomena, N., Florinda, F., Marisa, D.M., Donatella, A. (2019). Biochemical, antioxidant properties and antimicrobial activity of different onion varieties in the Mediterranean area. J. Food Measur. Character., 13(2), 1232–1241. https://doi.org/10.1007/s11694-019-00038-2
  34. Ma, Z., Li, J., Bai G. (2024). ReLU Hull Approximation. Proceed. ACM Programm. Lang., 8(75), 2260–2287. https://doi.org/10.1145/3632917
  35. Mahajan, S., Das, A., Sardana, H. K. (2015). Image acquisition techniques for assessment of legume quality. Trends Food Sci. Technol., 42(2), 116–133. https://doi.org/10.1016/j.tifs.2015.01.001
  36. Marrelli, M., Amodeo, V., Statti, G., Conforti, F. (2018). Biological properties and bioactive components of Allium cepa L.: focus on potential benefits in the treatment of obesity and related comorbidities. Molecules, 24(1), 119. https://doi.org/10.3390/molecules24010119
  37. Meenu, M., Cai, Q., Xu, B. (2019). A critical review on analytical techniques to detect adulteration of extra virgin olive oil. Trends Food Sci. Technol., 91, 391–408. https://doi.org/10.1016/j.tifs.2019.07.045
  38. Mohammed, A.I., Ali, S.H., Hassan, O.M.S., Salih, S.O. (2023). A deep learning model with a new loss function for age estimation. J. Duhok Univ., 26(2), 367–380. https://doi.org/10.26682/sjuod.2023.26.2.32
  39. Nath, P.C., Mishra, A.K., Sharma, R., Bhunia, B., Mishra, B., Tiwari, A., Nayak, P.K., Sharma, M., Bhuyan, T., Kaushal, S., Mohanta, Y.K., Sridhar, K. (2024). Recent advances in artificial intelligence towards the sustainable future of agri-food industry. Food Chem., 447, 138945. https://doi.org/10.1016/j.foodchem.2024.138945
  40. Ochar, K., Kim, S.H. (2023). Conservation and global distribution of onion (Allium cepa L.) germplasm for agricultural sustainability. Plants, 12(18), 3294. https://doi.org/10.3390/plants12183294
  41. Ohanenye, I.C., Alamar, M.C., Thompson, A., Terry, L.A. (2019). Fructans redistribution prior to sprouting in stored onion bulbs is a potential marker for dormancy break. Postharv. Biol. Technol., 149, 221–234. https://doi.org/10.1016/j.postharvbio.2018.12.002
  42. Oord, A. van den, Dieleman, S., Zen, H., Simonyan, K., Vinyals, O., Graves, A., Kalchbrenner, N., Senior, A., Kavukcuoglu, K. (2016). WaveNet: A Generative Model for Raw Audio. Cornell University, 1–15. https://doi.org/10.48550/arXiv.1609.03499
  43. Patel, K.K., Kar, A., Jha, S.N., Khan, M.A. (2012). Machine vision system: a tool for quality inspection of food and agricultural products. J. Food Sci. Technol., 49(2), 123–141. https://doi.org/10.1007/s13197-011-0321-4
  44. Patrício, D.I., Rieder, R. (2018). Computer vision and artificial intelligence in precision agriculture for grain crops: A systematic review. Comp. Electron. Agric., 153, 69–81. https://doi.org/10.1016/j.compag.2018.08.001
  45. Petropoulos, S.A., Ntatsi, G., Ferreira, I.C.F.R. (2017). Long-term storage of onion and the factors that affect its quality: A critical review. Food Rev. Int., 33(1), 62–83. https://doi.org/10.1080/87559129.2015.1137312
  46. Pfeiffer, M., Schaeuble, M., Nieto, J., Siegwart, R., Cadena, C. (2017). From perception to decision: A data-driven approach to end-to-end motion planning for autonomous ground robots. 2017 IEEE International Conference on Robotics and Automation (ICRA), 1527–1533. https://doi.org/10.1109/ICRA.2017.7989182
  47. Piechowiak, T., Grzelak-Błaszczyk, K., Bonikowski, R., Balawejder, M. (2020). Optimization of extraction process of antioxidant compounds from yellow onion skin and their use in functional bread production. LWT, 117, 108614. https://doi.org/10.1016/j.lwt.2019.108614
  48. Pöhnl, T., Böttcher, C., Schulz, H., Stürtz, M., Widder, S., Carle, R., Schweiggert, R.M. (2017). Comparison of high performance anion exchange chromatography with pulsed amperometric detection (HPAEC-PAD) and ultra-high performance liquid chromatography with evaporative light scattering (UHPLC-ELSD) for the analyses of fructooligosaccharides in onion. J. Food Compos. Anal., 63, 148–156. https://doi.org/10.1016/j.jfca.2017.08.001
  49. Przybył, K., Gawałek, J., Koszela, K. (2023). Application of artificial neural network for the quality-based classification of spray-dried rhubarb juice powders. J. Food Sci. Technol., 60(3), 809–819. https://doi.org/10.1007/s13197-020-04537-9
  50. Puspadhani, R., Purwaningsih, T., Kesumawati, A.P.A.H., Hakim, R.B.F. (2021). Onions classification automation using deep learning with convolutional neural network method. AIP Conf. Proc. 2370, 090002. https://doi.org/10.1063/5.0063121
  51. Putnik, P., Gabrić, D., Roohinejad, S., Barba, F.J., Granato, D., Mallikarjunan, K., Lorenzo, J.M., Bursać Kovačević, D. (2019). An overview of organosulfur compounds from Allium spp.: From processing and preservation to evaluation of their bioavailability, antimicrobial, and anti-inflammatory properties. Food Chem., 276, 680–691. https://doi.org/10.1016/j.foodchem.2018.10.068
  52. Qi, H., Wang, C., Li, J., Shi, L. (2024). Loop closure detection with CNN in RGB-D SLAM for intelligent agricultural equipment. Agriculture, 14(6), 949. https://doi.org/10.3390/agriculture14060949
  53. Raghu, S., Sriraam, N. (2018). Classification of focal and non-focal EEG signals using neighborhood component analysis and machine learning algorithms. Expert Systems Appl., 113, 18–32. https://doi.org/10.1016/j.eswa.2018.06.031
  54. Ramirez-Paredes, J.P., Hernandez-Belmonte, U.H. (2020). Visual quality assessment of malting barley using color, shape and texture descriptors. Comp. Electron. Agric., 168, 105110. https://doi.org/10.1016/j.compag.2019.105110
  55. Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang, Z., Karpathy, A., Khosla, A., Bernstein, M., Berg, A.C., Fei-Fei, L. (2015). ImageNet large scale visual recognition challenge. Int. J. Comp. Vision, 115(3),211–252. https://doi.org/10.1007/s11263-015-0816-y
  56. Rybacki, P., Niemann, J., Bahcevandziev, K., Durczak, K. (2023). Convolutional neural network model for variety classification and seed quality assessment of winter rapeseed. Sensors, 23(5), 2486. https://doi.org/10.3390/s23052486
  57. Rybacki, P., Niemann, J., Derouiche, S., Chetehouna, S., Boulaares, I., Seghir, N.M., Diatta, J., Osuch, A. (2024). Convolutional Neural Network (CNN) model for the classification of varieties of date palm fruits (Phoenix dactylifera L.). Sensors 2024, 24, 558. https://doi.org/10.3390/s24020558
  58. Rybacki, P., Przygodziński, P., Blecharczyk, A., Kowalik, I., Osuch, A., Osuch, E. (2022). Strip spraying technology for precise herbicide application in carrot fields. Open Chem., 20(1), 287–296. https://doi.org/10.1515/chem-2022-0135
  59. Rybacki, P., Przygodziński, P., Osuch, A., Blecharczyk, A., Walkowiak, R., Osuch, E., Kowalik, I. (2021). The technology of precise application of herbicides in onion field cultivation. Agriculture, 11(7), 577. https://doi.org/10.3390/agriculture11070577
  60. Sagar, N.A., Khar, A., Vikas, Tarafdar, A., Pareek, S. (2021). Physicochemical and thermal characteristics of onion skin from fifteen indian cultivars for possible food applications. J. Food Qual., 1–11. https://doi.org/10.1155/2021/7178618
  61. Sagar, N.A., Pareek, S., Sharma, S., Yahia, E. M., Lobo, M.G. (2018). Fruit and vegetable waste: bioactive compounds, their extraction, and possible utilization. Compr. Rev. Food Sci. Food Safety, 17(3), 512–531. https://doi.org/10.1111/1541-4337.12330
  62. Schroff, F., Kalenichenko, D., Philbin, J. (2015). FaceNet: A unified embedding for face recognition and clustering. 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 815–823. https://doi.org/10.1109/CVPR.2015.7298682
  63. Shalev-Shwartz, S., Shammah, S., Shashua, A. (2016). Safe, multi-agent, reinforcement learning for autonomous driving. https://doi.org/10.48550/arXiv.1610.03295
  64. Shahhosseini, M., Hu, G., Khaki, S., Archontoulis, S.V. (2021). Corn yield prediction with ensemble CNN-DNN. Front. Plant Sci. Sec. Tech. Adv. Plant Sci., 12, https://doi.org/10.3389/fpls.2021.709008
  65. Shelke, N., Chaudhury, S., Chakrabarti, S., Bangare, S.L., Yogapriya, G., Pandey, P. (2022). An efficient way of text-based emotion analysis from social media using LRA-DNN. Neurosci. Inf., 2(3), 100048. https://doi.org/10.1016/j.neuri.2022.100048
  66. Singh, P., Manure, A. (2020). Images with TensorFlow. In: Learn TensorFlow 2.0. Apress, Berkeley, CA. https://doi.org/10.1007/978-1-4842-5558-2_4
  67. Wang, M., Wu, X., Chai, F., Zhang, Y., Jiang, J. (2016). Plasma prolactin and breast cancer risk: a meta-analysis. Sci. Rep., 6(1), 25998. https://doi.org/10.1038/srep25998
  68. Xie, W., Wang, F., Yang, D. (2019a). Research on carrot grading based on machine vision feature parameters. IFAC-PapersOnLine, 52(30), 30–35. https://doi.org/10.1016/j.ifacol.2019.12.485
  69. Xie, W., Wang, F., Yang, D. (2019b). Research on carrot surface defect detection methods based on machine vision. IFAC-PapersOnLine, 52(30), 24–29. https://doi.org/10.1016/j.ifacol.2019.12.484
  70. Xie, W., Wei, S., Yang, D. (2023). Morphological measurement for carrot based on three-dimensional reconstruction with a ToF sensor. Postharv. Biol. Technol., 197, 112216. https://doi.org/10.1016/j.postharvbio.2022.112216
  71. Zheng, B., Sun, R., Tian, X., Chen, Y. (2018). S-net: a scalable convolutional neural network for jpeg compression artifact reduction. J. Electron. Imaging, 27, 043037. https://doi:10.1117/1.JEI.27.4.043037
  72. Zheng, N., Yao, Z., Tao, S., Almadhor, A., Alqahtani, M.S., Ghoniem, R.M., Zhao, H., Li, S. (2023). Application of nanotechnology in breast cancer screening under obstetrics and gynecology through the use of CNN and ANFIS. Environ. Res., 234, 116414. https://doi.org/10.1016/j.envres.2023.116414
  73. Zhou, J., Troyanskaya, O.G. (2015). Predicting effects of noncoding variants with deep learning-based sequence model. Nature Methods, 12(10), 931–934. https://doi.org/10.1038/nmeth.3547
  74. Zhou, Y., Li, C., Feng, B., Chen, B., Jin, L., Shen, Y. (2020). UPLC-ESI-MS/MS based identification and antioxidant, antibacterial, cytotoxic activities of aqueous extracts from storey onion (Allium cepa L. var. proliferum Regel). Food Res. Int., 130, 108969. https://doi.org/10.1016/j.foodres.2019.108969

Downloads

Download data is not yet available.