Skip to main navigation menu Skip to main content Skip to site footer

Vol. 24 No. 4 (2025)

Articles

Plant-parasitic nematodes associated with Citrus aurantiifolia (Christm.) Swingle and their relationship with soil type

DOI: https://doi.org/10.24326/asphc.2025.5497
Submitted: 8 February 2025
Published: 29.08.2025

Abstract

Plant-parasitic nematodes (PPNs) pose a significant challenge to citrus farming worldwide, but their distribution and impact in the Al-Ahsa Oasis, Saudi Arabia (KSA), remain poorly understood. This study investigates the prevalence, diversity, and ecological dynamics of PPNs associated with Hasawi Lumi (Citrus aurantiifolia) trees, a key crop in the region. During the summer of 2024, a survey was performed in ten major Hasawi Lumi-growing areas, with 250 soil and root samples collected. Four genera of PPNs were identified, with Tylenchulus semipenetrans (52%), Helicotylenchus (44.8%), Pratylenchus (42.8%), and Xiphinema (22%) being the most prevalent. The physicochemical properties of the soil (e.g., texture, pH, and minerals) were determined to assess their impact on nematode populations. Our results revealed that soil characteristics significantly affect the distribution of PPNs, with sandy soils and moderate organic matter favoring nematode diversity, while high salinity suppresses it. The current research constitutes the initial attempt to assess PPNs in Hasawi Lumi orchards and offers important recommendations that can be implemented to improve citrus fruit yield in Al-Ahsa Oasis. These results indicate that soil factors must be considered in any attempt to manage nematode infection, reflecting the necessity for adopting strategies to improve the productivity of citrus crops in the concerned area.

References

  1. Abd-Elgawad, M.M.M. (2020). Managing nematodes in Egyptian citrus orchards. Bull. Nation. Res. Centre, 44(1), 135–136. https://doi.org/10.1186/s42269-020- 00298-9
  2. Abd-Elgawad, M.M.M., Koura, F.F.H., Montasser, S.A., Hammam, M.M.A. (2016). Distribution and losses of Tylenchulus semipenetrans in citrus orchards on reclaimed land in Egypt. Nematology, 18(10), 1141–1150. https://doi.org/10.1163/15685411-00003020
  3. Abu Habib, A., Younes, H., Ibrahim, I., Khalil, A. (2020). Plant parasitic nematodes associated with citrus trees and reaction of two citrus cultivars to Tylenchulus semipenetrans in northern Egypt. J. Adv. Agric. Res., 25(1), 166–175. https://doi.org/10.21608/jalexu.2020.161764
  4. Al Sayed, A.A., Abdel-Hameed, S.H., El-Nagar, H.I. (1993). Population dynamics of Tylenchulus semipenetrans in relation to citrus species and soil temperature. Bull. Fac. Agric. Cairo Univ., 44, 183–190.
  5. Al-Hazmi, A.S. (1997). Status of plant nematology in Saudi Arabia. In: M.A. Maqbool, B.R. Kerry (eds.). Plant nematode problems and their control in the Near East Region: Proceedings of the Expert Consultation on Plant Nematode Problems and Their Control in the Near East Region, Karachi, Pakistan, 22–26 November 1992. Food and Agriculture Organization (FAO), pp. 315.
  6. Al-Yahya, F.A., Al-Hazmi, A.S., El-Saedy, M.A. (1988). Effect of soil texture on reproduction of Tylenchulus semi penetrans on lime seedlings irrigated with treated sewage water. Alexandria J. Agric. Res., 33(1), 183–192.
  7. Badii, K.B., Billah, M.K., Afreh Nuamah, K., Obeng Ofori, D., Nyarko, G. (2015). Review of the pest status, economic impact, and management of fruit-infesting flies (Diptera: Tephritidae) in Africa. Afr. J. Agric. Res., 10(12), 1488–1498. https://doi.org/10.5897/ajar2014.9278
  8. Bello, T.T., Coyne, L.D., Rashidifard, M., Fourie, H. (2020). Abundance and diversity of plant-parasitic nematodes associated with watermelon in Nigeria, with focus on Meloidogyne spp. J. Nematol., 22, 781–797. https://doi. org/10.1163/15685411-00003340
  9. Benjlil, H., Elkassemi, K., Aït Hamza, M., Mateille, T., Furze, J.N., Cherifi, K., Mayad, E.H., Ferji, Z. (2020). Plant-parasitic nematodes parasitizing saffron in Morocco: Structuring drivers and biological risk identification. Appl. Soil Ecol., 147, 103362. https://doi.org/10.1016/j.apsoil.2019.103362
  10. De Ley, P., Félix, M.A., Frisse, L.M., Nadler, S.A., Sternberg, P.W., Thomas, W.K. (1999). Molecular and morphological characterisation of two reproductively isolated species with mirror-image anatomy (Nematoda: Cephalobidae). Nematology, 1(6), 591–612. https://doi.org/10.1163/156854199508559
  11. Duncan, L.W. (2005). Nematode parasites of citrus. In: R.A. Sikora, M. Luc, J. Bridge (eds.), Plant parasitic nematodes in subtropical and tropical agriculture. 2nd ed. CAB International, pp. 437–466. https://doi.org/10.1079/9780851997278.0437
  12. Eissa, M.F.M., Mustafa, M., Al-Kahtani, M.S. (1979). Susceptibility of some citrus rootstocks to the citrus nematode, Tylenchulus semipenetrans Cobb, 1913 and spiral nematode, Helicotylenchus dihystera (Cobb, 1893) Sher, 1961 in Saudi Arabia. Bull. Zool. Soc. Egypt, 28, 62–65.
  13. Francl, L.J. (1993). Multivariate analysis of selected edaphic factors and their relationship to Heterodera glycines population density. J. Nematol., 25(2), 270–276.
  14. Freitas, V., Cares, J., Huang, S.P. (2008). The influence of Citrus spp. on the community of soil nematodes in the dry and rainy seasons in Distrito Federal of Brazil. Nematol. Brasil., 32(1), 20–32.
  15. Gee, G.W., Bauder, J.W. (2018). Particle-size analysis. In: A. Klute (ed.), Methods of soil analysis, part 1: Physical and mineralogical methods. 2nd ed., Am. Soc. Agron./ Soil Sci. Soc. Am., 383–411. https://doi.org/10.2136/sssabookser5.1.2ed.c15
  16. Hammam, M., Abdel Gawad, M., Ruan, W., El-bahrawy, A. (2021). Management of pests and pathogens affecting citrus yield in Egypt with special emphasis on nematodes. Egypt. J. Agronematol., 20(1), 64–84. https://doi.org/10.21608/ejaj.2021.183231
  17. Holterman, M., van der Wurff, A., van den Elsen, S., van Megen, H., Bongers, T., Holovachov, O., Bakker, J., Helder, J. (2006). Phylum-wide analysis of SSU rDNA reveals deep phylogenetic relationships among nematodes and accelerated evolution toward crown clades. Mol. Biol. Evol., 23(9), 1792–1800. https://doi.org/10.1093/molbev/msl044
  18. Hooper, D.J., Hallmann, J., Subbotin, S.A. (2005). Methods for extraction, processing, and detection of plant and soil nematodes. In: M. Luc, R.A. Sikora, J. Bridge (eds.), Plant parasitic nematodes in subtropical and tropical agriculture. CAB International, 53–86. https://doi.org/10.1079/9780851997278.0053
  19. Hu, C., Qi, Y. (2013). Effective microorganisms and compost favor nematodes in wheat crops. Agron. Sustain. Dev., 33(3), 573–579. https://doi.org/10.1007/s13593-012-0130-9
  20. Jones, J.T., Haegeman, A., Danchin, E.G.J., Gaur, H.S., Hel¬der, J., Jones, M.G.K., Kikuchi, T., Manzanilla-López, R., Palomares-Rius, J.E., Wesemael, W.M.L. (2013). Top 10 plant-parasitic nematodes in molecular plant pathology. Mol. Plant Pathol., 14(9), 946–961. https://doi.org/10.1111/mpp.12057
  21. Karuri, H.W., Olago, D., Neilson, R., Njeri, E., Opere, A., Ndegwa, P. (2017). Plant parasitic nematode assemblages associated with sweet potato in Kenya and their relationship with environmental variables. Tropic. Plant Pathol., 42(1), 1–12. https://doi.org/10.1007/s40858-016-0114-4
  22. Kassambara, A., Mundt, F. (2020). Factoextra: Extract and visualize the results of multivariate data analy-ses [R package factoextra version 1.0.7]. https://doi.org/10.32614/cran.package.factoextra
  23. Khan, U.M., Sameen, A., Aadil, R.M., Shahid, M., Sezen, S., Zarrabi, A., Ozdemir, B., Sevindik, M., Kaplan, D.N., Selamoglu, Z., Ydyrys, A., Anitha, T., Kumar, M., Sharifi-Rad, J., Butnariu, M. (2021). Citrus genus and its waste utilization: A review on health-promoting activities and industrial application. Evid.-Based Compl. Altern. Med., 2021, 2488804. https://doi.org/10.1155/2021/2488804
  24. Kim, E., Seo, Y., Kim, Y. S., Park, Y., Kim, Y.H. (2017). Effects of soil textures on infectivity of root-knot nematodes on carrot. Plant Pathol. J., 33(1), 66–74. https://doi.org/10.5423/ppj.oa.07.2016.0155
  25. Kumar, K.K., Das, A.K. (2019). Diversity and community analysis of plant parasitic nematodes associated with citrus at citrus research station, Tinsukia, Assam. J. Entomol. Zool. Stud., 7(1), 187–189.
  26. Laasli, S.-E., Mokrini, F., Lahlali, R., Wuletaw, T., Paulitz, T., Dababat, A.A. (2022). Biodiversity of nematode communities associated with wheat (Triticum aestivum L.) in Southern Morocco and their contribution as soil health bioindicators. Diversity, 14(3), 194. https://doi.org/10.3390/d14030194
  27. Lê, S., Josse, J., Husson, F. (2008). FactoMineR: An R package for multivariate analysis. J. Stat. Soft., 25(1), 1–18. https://doi.org/10.18637/jss.v025.i01
  28. Maafi, Z.T., Damadzadeh, M. (2008). Incidence and control of the citrus nematode, Tylenchulus semipenetrans Cobb, in the north of Iran. Nematology, 10(1), 113–122. https://doi.org/10.1163/156854108783360096
  29. MacFarlane, S.A., Robinson, D.J. (2004). Transmission of plant viruses by nematodes. In: S.H. Gillespie, G.L. Smith, A. Osbourn (eds.), Microbe-vector interactions in vector-borne diseases. Cambridge Univ. Press, 263–286. https://doi.org/10.1017/cbo9780511754845.012
  30. Mai, W.F., Mullin, P.G., Lyon, H.H., Loeffler, K. (1996). Plant-parasitic nematodes: A pictorial key to genera. 5th ed. Cornell Univ. Press. http://www.jstor.org/stable/10.7591/j.ctv5rdz0t
  31. Maqbool, Z., Khalid, W., Atiq, H.T., Koraqi, H., Javaid, Z., Alhag, S.K., Al-Shuraym, L.A., Bader, D.M.D., Almarzuq, M., Afifi, M., Al-Farga, A. (2023). Citrus waste as source of bioactive compounds: Extraction and utilization in health and food industry. Molecules, 28(4), 1636. https://doi.org/10.3390/molecules28041636
  32. Mokrini, F., Abbad Andaloussi, F., Waeyenberge, L., Viaene, N., Moens, M. (2014). First report of the dagger nematode Xiphinema diversicaudatum in citrus orchards in Morocco. Plant Dis., 98(4), 575. https://doi.org/10.1094/pdis-07-13-0764-pdn
  33. Mokrini, F., Janati, S., Andaloussi, F.A., Essarioui, A., Houari, A., Sbaghi, M. (2018). Importance and distribution of the main citrus parasitic nematodes in Morocco. Rev. Maroc. Sci. Agron. Vét., 6(4), 558–564.
  34. Mokrini, F., Laasli, S.E., Iraqui, D., Wifaya, A., Mimouni, A., Erginbas-Orakci, G., Imren, M., Dababat, A.A. (2019). Distribution and occurrence of plant-parasitic nematodes associated with raspberry (Rubus idaeus) in Souss-Massa region of Morocco. Relationship with soil physico-chemical factors. Russ. J. Nematol., 27(2), 107–121. https://doi.org/10.1163/15685411-00003286
  35. Nisa, R.U., Tantray, A.Y., Kouser, N., Allie, K.A., Wani, S.M., Alamri, S.A., Alyemeni, M.N., Wijaya, L., Shah, A.A. (2021). Influence of ecological and edaphic factors on biodiversity of soil nematodes. Saudi J. Biol. Sci., 28(5), 3049–3059. https://doi.org/10.1016/j.sjbs.2021.02.046
  36. Page, A.L., Miller, R.H., Keeney, D.R. (1982). Methods of soil analysis, part 2: Chemical and microbiological properties. 2nd ed. Am. Soc. Agron. https://doi.org/10.1002/jpln.19851480319
  37. Richard, L.A. (1954). Diagnosis and improvement of saline and alkali soils. Agricultural Handbook No. 60. U.S. Department of Agriculture. https://doi.org/10.1097/00010694-195408000-00012
  38. Rodríguez-Kábana, R. (1986). Organic and inorganic nitrogen amendments to soil as nematode suppressants. J. Nematol., 18(2), 129–135.
  39. Ryss, A.Y. (2017). A simple express technique to process nematodes for collection slide mounts. J. Nematol., 49(1), 27–32. https://doi.org/10.21307/jofnem-2017-043
  40. Salahi Ardakani, A., Tanha Mafi, Z., Mokaram Hesar, A., Mohammadi Goltappeh, E. (2014). Relationship between soil properties and abundance of Tylenchulus semipenetrans in citrus orchards, Kohgilouyeh va Boyerahmad Province. J. Agric. Sci. Technol., 16(6), 1699– 1710.
  41. Sorribas, F.J., Verdejo-Lucas, S., Pastor, J. (2008). Population densities of Tylenchulus semipenetrans related to physicochemical properties of soil and yield of clementine mandarin in Spain. Plant Dis., 92(3), 445–450. https://doi.org/10.1094/pdis-92-3-0445
  42. Sparks, D.L., Page, A.L., Helmke, P.A., Loeppert, R.H., Soltanpour, P.N., Tabatabai, M.A., Johnston, C.T., Sumner, M.E. (eds.). (2020). Methods of soil analysis, Part 3: Chemical methods. Vol. 3. John Wiley & Sons. https://doi.org/10.2136/sssabookser5.3
  43. SPSS (2016). 2a IBM SPSS Statistics Processes for PC. Version 23.0. IBM SPSS Statistics 23 Step by Step, 22–39. https://doi.org/10.4324/9781315545899-7
  44. Van Gundy, S.D., Martin, G.P. (1962). Soil texture, pH, and moisture effect on the development of citrus nematode (Tylenchulus semipenetrans). Phytopathology, 52(1), 31.
  45. Yavuzaslanoglu, E., Elekcioglu, H.I., Nicol, J.M., Yorgancilar, O., Hodson, D., Yildirim, A.F., Yorgancilar, A., Bolat, N. (2012). Distribution, frequency, and occurrence of cereal nematodes on the central Anatolian plateau in Turkey and their relationship with soil physicochemical properties. Nematology, 14(7), 839–854. https://doi.org/10.1163/156854112x631926
  46. Zou, Z., Xi, W., Hu, Y., Nie, C., Zhou, Z. (2016). Antioxidant activity of citrus fruits. Food Chem., 196, 885–896. https://doi.org/10.1016/j.foodchem. 2015.09.072
  47. Zoubi, B., Mokrini, F., Dababat, A.A., Amer, M., Ghoulam, C., Lahlali, R., Laasli, S.-E., Khfif, K., Imren, M., Akachoud, O., Benkebboura, A., Housseini, A.I., Qaddoury, A. (2022). Occurrence and geographic distribution of plant-parasitic nematodes associated with citrus in Morocco and their interaction with soil patterns. Life, 12(5), 637. https://doi.org/10.3390/life12050637

Downloads

Download data is not yet available.

Similar Articles

<< < 1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.