Skip to main navigation menu Skip to main content Skip to site footer

Vol. 20 No. 1 (2021)

Articles

Seed priming with selenium improves growth, water relation and antioxidant activity of pot marigold (Calendula officinalis L.) under drought conditions

DOI: https://doi.org/10.24326/asphc.2021.1.3
Submitted: July 10, 2019
Published: 2021-02-26

Abstract

Selenium (Se) seed priming is an effective method for enhancing seed performance and improving tolerance of crops to abiotic stresses particularly drought. A pot experiment was conducted to determine the effect of seed priming of pot marigold (Calendula officinalis L.) with Se on growth, physiology and antioxidant activity grown under both control and drought stress conditions. Treatments included 6 levels of seed priming with Se (0 (control), 0.5, 1, 1.5, 2 and 4 mg. L–1) and 2 levels of water stress (well-watered and drought conditions). The results showed that supplemental Se at lower concentrations improved growth parameters like total leaf area, root length and total biomass of control and drought-stressed plants. In addition, relative water content and chlorophyll content of the drought-stressed plants increased with the application of Se at lower concentrations. Treatment with Se mitigated adverse effects of drought stress through enhancement of photosynthetic pigments, improvement of water relations, accumulation of soluble sugars and increased antioxidant activity. Seed priming with Se also increased total phenols, flavonoids and free radical scavenging activity of pot marigold plants both under well-watered and water stress conditions. It was found that seed priming with Se at lower concentrations (especially 1.5 mg. L–1) can mitigate the adverse effects of drought stress and improved antioxidant system of pot marigold plants.

References

  1. Amirghofran, Z., Azadbakht, M., Karimi, M.H. (2000). Evaluation of the immunomodulatory effects of five herbal plants. J. Ethnopharmacol., 72, 167–172. DOI: 10.1016/S0378-8741(00)00234-8
  2. Andrade, F.R., Silva, G.N. da, Guimarães, K.C., Barreto, H.B.F., Souza, K.R.D. de, Guilherme, L.R.G., Faquin, V., Reis, A.R. dos (2018). Selenium protects rice plants from water deficit stress. Ecotoxicol. Environ. Saf., 164, 562–570. DOI: 10.1016/j.ecoenv.2018.08.022
  3. Anjum, S.A., Wang, L., Farooq, M., Khan, I., Xue, L. (2011). Methyl jasmonate–induced alteration in lipid peroxidation, antioxidative defence system and yield in soybean under drought. J. Agron. Crop. Sci., 197, 296–301. DOI: 10.1111/j.1439-037X.2011.00468.x
  4. Arnon, D.I. (1949). Copper enzyme in isolated chloroplast poly phenol oxidase in Beta vulgaris. Plant Physiol., 24, 1–15.
  5. Astaneh, R.K., Bolandnazar, S., Zaare Nahandi, F., Oustan, S. (2018). Effect of selenium application on phenylalanine ammonia-lyase (PAL) activity, phenol leakage and total phenolic content in garlic (Allium sativum L.) under NaCl stress. Inform. Proc. Agric., 5, 339–344. DOI: 10.1016/j.inpa.2018.04.004
  6. Bajehbaj, A.A. (2010). The effects of NaCl priming on salt tolerance in sunflower germination and seedling grown under salinity conditions. Afr. J. Biotechnol., 9, 1764–1770.
  7. Bayat, H., Naseri Moghadam, A. (2019). Drought effects on growth, water status, proline content and antioxidant system in three Salvia nemorosa L. cultivars. Acta Physiol. Plant., 41, 149. DOI: 10.1007/s11738-019-2942-6
  8. Bayat, H., Nemati, H., Tehranifar, A., Gazanchian, A. (2016). Screening different crested wheatgrass (Agropyron cristatum (L.) Gaertner.) accessions for drought stress tolerance. Arch. Agron. Soil Sci., 62, 769–780. DOI: 10.1080/03650340.2015.1094182
  9. Chen, C.C., Sung, J.M. (2001). Priming bitter gourd seeds with selenium solution enhances germinability and antioxidative responses under sub-optimal temperature. Physiol. Plant., 111, 9–16. DOI: 10.1034/j.1399-3054.2001.1110102.x
  10. Dole, J.M., Wilkins, H.F. (2005). Floriculture principles and species. Prentice-Hall Inc., New Jersey, pp. 613.
  11. Dong, J.Z., Wang, Y., Wang, S.H., Yin, L.P., Xu, G.J., Zheng, C., Leia, C., Zhanga, M.Z. (2013). Selenium increases chlorogenic acid, chlorophyll and carotenoids of Lycium chinense leaves. J. Sci. Food Agric., 93, 310–315.
  12. Emam, M.M., Khattab, H.E., Helal, N.M., Deraz, A.E. (2014). Effect of selenium and silicon on yield quality of rice plant grown under drought stress. Aust. J. Crop Sci., 8, 596–605.
  13. Farooq, M., Wahid, A., Kobayashi, N., Fujita, D., Basra, S.M.A. (2009). Plant drought stress: effects, mechanisms and management. Agron. Sustain. Dev., 29, 185–212. DOI: 10.1051/agro:2008021
  14. Gonzalez, L., Gonzalez-Vilar, M. (2003). Determination of relative water content. In: Handbook of plant ecophysiology techniques, M.J. (Ed). Kluwer Academic, Dordrecht, 207–212. DOI: 10.1007/0-306-48057-3_14
  15. Habibi, G. (2013). Effect of drought stress and selenium spraying on photosynthesis and antioxidant activity of spring barley. Acta Agric. Slov., 101, 31–39.
  16. Hajiboland, R., Rahmat, S., Aliasgharzad, N., Hartikainen, H. (2015). Selenium-induced enhancement in carbohydrate metabolism in nodulated alfalfa (Medicago sativa L.) as related to the glutathione redox state. J. Soil Sci. Plant Nut., 61, 676–687. DOI: 10.1080/00380768.2015.1032181
  17. Hsu, Y.T., Kao, C.H. (2003). Role of abscisic acid in cadmium tolerance of rice (Oryza sativa L.) seedlings. Plant Cell Environ., 26, 867–874. DOI: 10.1046/j.1365-3040.2003.01018.x
  18. Ibrahim, E.A. (2016). Seed priming to alleviate salinity stress in germinating seeds. J. Plant Physiol., 192, 38–46. DOI: 10.1016/j.jplph.2015.12.011
  19. Irigoyen, J.J., Emerich, D.W., Sanchez Diaz, M. (1992). Water stress induced changes in concentrations of proline and total soluble sugars in nodulated alfalfa (Medicago sativa) plants. Physiol. Plant, 84, 55–60. DOI: 10.1034/j.1399-3054.1992.840109.x
  20. Jiang, C., Zu, C., Lu, D., Zheng, Q., Shen, J., Wang, H., Li, D. (2017). Effect of exogenous selenium supply on photosynthesis, Na+ accumulation and antioxidative capacity of maize (Zea mays L.) under salinity stress. Sci. Rep., 7, 42039. DOI: 10.1038/srep42039
  21. Karimi, S., Yadollahi, A., Arzani, K., Imani, A. (2015). Gas exchange response of almond genotypes to water stress. Photosynthetica, 53, 29–34. DOI: 10.1007/s11099-015-0070-0
  22. Kaur, N., Sharma, S., Kaur, S., Nayya, H. (2014). Selenium in agriculture: a nutrient or contaminant for rops? Arch. Agron. Soil Sci., 60, 1593–1624. DOI: 10.1080/03650340.2014.918258
  23. Khan, N., Bano, A., Babar, M.A. (2016). The root growth of wheat plants, the water conservation and fertility status of sandy soils influenced by plant growth promoting rhizobacteria. Symbiosis, 72, 195–205. DOI: 10.1007/s13199-016-0457-0
  24. Khan, N., Ali, S., Shahid, M.A., Kharabian-Masouleh, A. (2017). Advances in detection of stress tolerance in plants through metabolomics approaches. Plant Omics, 10, 153–163. DOI: 10.21475/poj.10.03.17.pne600
  25. Koleva, I.I., Van Beek, T.A., Linssen, J.P.H., de Groot, A., Evstatieva, L.N. (2002). Screening of plant extracts for antioxidant activity: A comparative study on three testing methods. Phytochem. Anal., 13, 8–17. DOI: 10.1002/pca.611
  26. Kumar, M., Bijo, A.J., Baghel, R.S., Reddy, C.R.K., Jha, B. (2012). Selenium and spermine alleviate cadmium induced toxicity in the red seaweed Gracilaria dura by regulating antioxidants system and DNA methylation. Plant Physiol. Bioch., 51, 129–138.
  27. Lutts, S., Kinet, J., Bouharmont, J. (1996). NaCl-induced senescence in leaves of rice (Oryza sativa L.) cultivars differing in salinity resistance. Ann. Bot., 78, 389–398. DOI: 10.1006/ anbo.1996.0134
  28. Mardani, H., Bayat, H., Saeidnejad, A.H., Rezaie, E. (2012). Assessment of salicylic acid impacts on seedling characteristic of cucumber (Cucumis sativus L.) under water stress. Not. Sci. Biol., 4, 112–115. DOI: 10.15835/nsb417258
  29. Nawaz, F., Ashraf, M.Y., Ahmad, R., Waraich, E.A. (2013). Selenium (Se) seed priming induced growth and biochemical changes in wheat under water deficit conditions. Biol. Trace Elem. Res., 151, 284–293. DOI: 10.1007/s12011-012-9556-9
  30. Nawaz, F., Ahmad, R., Ashraf, M.Y., Waraich, E.A., Khan, S.Z. (2015). Effect of selenium foliar spray on physiological and biochemical processes and chemical constituents of wheat under drought stress. Ecotoxicol. Environ. Saf., 113, 191–200. DOI: 10.1016/j.ecoenv.2014.12.003
  31. Nawaz, F., Naeem, M., Ashraf, M.Y., Tahir, M.N., Zulfiqar, B., Salahuddin, M., Shabbir, R.N., Aslam, M. (2016). Selenium supplementation affects physiological and biochemical processes to improve fodder yield and quality of maize (Zea mays L.) under water deficit conditions. Front. Plant Sci., 7, 1438. DOI: 10.3389/fpls.2016.01438
  32. Pennanen, A., Xue, T., Hartikainen, H. (2002). Protective role of selenium in plant subjected to severe UV irradiation stress. J. Appl. Bot., 76, 66–76.
  33. Proietti, P., Nasini, L., Del Buono, D., D’Amato, R., Tedeschini, E., Businelli, D. (2013). Selenium protects olive (Olea europaea L.) from drought stress. Sci. Hortic., 164, 165–171. DOI: 10.1016/j.scienta.2013.09.034
  34. Re, T.A., Mooney, D., Antignac, E., Dufour, E., Bark, I., Srinivasan, V., Nohynek, G. (2009). Application of the threshold of toxicological concern approach for the safety evaluation of calendula flower (Calendula officinalis) petals and extracts used in cosmetic and personal care products. Food Chem. Toxicol., 47, 1246–1254. DOI: 10.1016/j.fct.2009.02.016
  35. Saffaryazdi, A., Lahouti, M., Ganjeali, A., Bayat, H. (2012). Impact of selenium supplementation on growth and selenium accumulation on spinach (Spinacia oleracea L.) plants. Not. Sci. Biol., 4, 95–100. DOI: 10.15835/nsb448029
  36. Shanker, A.K., Maheswari, M., Yadav, S.K., Desai, S., Bhanu, D., Attal, N.B., Venkateswarlu, B. (2014). Drought stress responses in crops. Funct. Integr. Genomics, 14, 11–22. DOI: 10.1007/s10142-013-0356-x
  37. Singleton, V.L., Rossi, J.A. (1965). Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am. J. Enol. Viticult., 16, 144–148.
  38. Tapiero, H., Townsend, D.M., Tew, K.D. (2003). Dossier: Oxidative stress pathologies and antioxidants: The antioxidant role of selenium and seleno-compounds. Biomed. Pharmacoth., 57, 134–144
  39. Valadabadi, S.A., Shiranirad, A.H., Farahani, H.A. (2010). Ecophysiological influences of zeolite and selenium on water deficit stress tolerance in different rapeseed cultivars. J. Ecol. Nat. Environ., 2, 154–159.
  40. Wang, C.Q. (2011). Water‐stress mitigation by selenium in Trifolium repens L. J. Soil Sci. Plant Nut., 174, 276–282. DOI: 10.1002/jpln.200900011
  41. Waraich, E.A., Ahmad, R., Saifullah, U., Ashraf, M., Ehsanullah, Y. (2011). Role of mineral nutrition in alleviation of drought stress in plants. Aust. J. Crop Sci., 5, 764–777.
  42. Yao, X., Chu, J., Wang, G. (2009). Effects of selenium on wheat seedlings under drought stress. Biol. Trace Elem. Res., 130, 283–290. DOI: 10.1007/s12011-009-8328-7
  43. Yoo, K.M., Lee, C.H., Lee, H., Moon, B., Lee, C.Y. (2008). Relative antioxidant and cytoprotective activities of common herbs. Food Chem., 106, 929–936. DOI: 10.1016/j.foodchem.2007.07.006
  44. Zhang, C., Huang, Z. (2013). Effects of endogenous abscisic acid, jasmonic acid, polyamines, and polyamine oxidase activity in tomato seedlings under drought stress. Sci. Hortic., 159, 172–177. DOI: 10.1016/j.scienta.2013.05.013

Downloads

Download data is not yet available.

Similar Articles

<< < 34 35 36 37 38 39 40 41 42 43 > >> 

You may also start an advanced similarity search for this article.