Skip to main navigation menu Skip to main content Skip to site footer

Vol. 21 No. 4 (2022)

Articles

Chemical composition phenolic, antioxidant, and bio-herbicidal properties of the essential oil of rosemary (Rosmarinus officinalis L.)

DOI: https://doi.org/10.24326/asphc.2022.4.3
Submitted: October 31, 2021
Published: 2022-08-31

Abstract

The essential oil yield was obtained from the rosemary plant at the rate of 0.93 mL/100 g, and 1,8-cineol, camphor, isoborneol, α-pinene were identified as the highest component. While the total phenolic content in the essential oil of the rosemary plant was 13.87 mg GAE/g (DW) and the IC50 value was 15.02 μg extract mL–1, the DPPH antioxidant activity value was obtained as 38.43%. For the investigation of herbicidal effect of the essential oils on seed germination , different doses (0.5, 1.0, 2.0, 4.0, 8.0 and 16.0 μL Petri–1) were used on 2 crop plants (pepper and wheat) and 4 weeds: (Amaranthus palmeri S. Wats.), (Amaranthus albus L.), (Avena fatua L.) and (Sinapis arvensis L.). It was determined that as the applied amount of essential oil increased, the germination of the seeds was more suppressed. The highest effect of essential oil was detected in 16 μl Petri–1 dose application in all treated seeds.

References

  1. Arminante, F., De Falco, E., De Feo, V., De Martino, L., Mancini, E., Quaranta, E. (2006). Allelopathic activity of essential oils from Mediterranean Labiatae. I International Symposium on the Labiatae: Advances in Production, Biotechnology and Utilisation, 22–25 February, Sanremo, Italy, 347–360. https://doi.org/10.17660/ActaHortic.2006.723.47 DOI: https://doi.org/10.17660/ActaHortic.2006.723.47
  2. Atak, M., Mavi, K., Uremis, I. (2016). Bio-herbicidal effects of oregano and rosemary essential oils on germination and seedling growth of bread wheat cultivars and weeds. Romanian Biotechnol. Lett., 21(1), 11149–11159.
  3. Azirak, S., Karaman, S. (2008).Allelopathic effect of some essential oils and components on germination of weed species, Acta Agric. Scan. B Soil Plant Sci., 58(1), 88–92. https://doi.org/10.1080/09064710701228353 DOI: https://doi.org/10.1080/09064710701228353
  4. Bányai, E.S., Tulok, M.H., Hgedűs, A., Renner, C., Varga, I.S. (2003). Antioxidant effect of various rosemary (Rosmarium officinalis L.) clones. Acta Biol. Szeged., 47(1–4), 111–113.
  5. Ben Kaab, S., Rebey, I.B., Hanafi, M., Berhal, C., Fauconnier, M.L., De Clerck, C., Ksouri, R. Jijakli, H. (2019). Rosmarinus officinalis essential oil as an effective antifungal and herbicidal agent. Span. J. Agric. Res., 17(2), e1006. https://doi.org/10.5424/sjar/2019172-14043 DOI: https://doi.org/10.5424/sjar/2019172-14043
  6. Dapkevicius, A., Venskutonis, R., van Beek, T.A., Linssen, J.P.H. (1998). Antioxidant activity of extracts obtained by different isolation procedures from some aromatic herbs grown in Lithuania. J. Sci. Food Agric., 77(1), 140–146. https://doi.org/10.1002/(SICI)1097-0010(199805)77:1<140::AID-JSFA18>3.0.CO;2-K DOI: https://doi.org/10.1002/(SICI)1097-0010(199805)77:1<140::AID-JSFA18>3.0.CO;2-K
  7. El Mahdi, J., Tarraf, W., Ruta, C., Piscitelli, L., Aly, A., De Mastro, G. (2020). Bio-herbicidal potential of the essential oils from different Rosmarinus officinalis L. chemotypes in laboratory assays. Agronomy, 10(6), 775. https://doi.org/10.3390/agronomy10060775 DOI: https://doi.org/10.3390/agronomy10060775
  8. Erdoğan, E.A. (2012). Using fields of plant essential oils and potential genetic effects. Lokman Hekim J., 2(2), 21–24.
  9. Hanana, M., Mansour, M.B., Algabr, M., Amri, I., Gargouri, S., Adberrahmane, R., Jamoussi, B., Hamrouni, L. (2017). Potential use of essential oils from four Tunisian species of Lamiaceae: Biological alternative for fungal and weed control. Rec. Nat. Produc., 11(3), 258–269.
  10. Hazrati, H., Saharkhiz, M.J., Moein, M., Khoshghalb, H. (2018). Phytotoxic effects of several essential oils on two weed species and tomato. Biocatal. Agric. Biotechnol., 13, 204–212. https://doi.org/10.1016/j.bcab.2017.12.014 DOI: https://doi.org/10.1016/j.bcab.2017.12.014
  11. Hussain, A.I., Anwar, F., Chatha, S.A.S., Jabbar, A., Mahboob, S., Nigam, P.S. (2010). Rosmarinus officinalis essential oil: antiproliferative, antioxidant and antibacterial activities. Brazilian J. Microbiol., 41(4), 1070–1078. https://doi.org/10.1590/S1517-83822010000400027 DOI: https://doi.org/10.1590/S1517-83822010000400027
  12. Jordan, M.J., Martínez, R.M., Goodner, K.L., Baldwin, E.A., Sotomayor, J.A. (2006). Seasonal variation of Thymus hyemalis Lange and Spanish Thymus vulgaris is L. essential oils composition. Ind. Crops Prod., 24, 253–263. https://doi.org/10.1016/j.indcrop.2006.06.011 DOI: https://doi.org/10.1016/j.indcrop.2006.06.011
  13. Marino, M., Bersani, C., Comi, G. (2001). Impedance measurements to study the antimicrobial activity of essential oils from Lamiaceae and Compositae. Int. J. Food Microbiol., 67(3), 187–195. https://doi.org/10.1016/S0168-1605(01)00447-0 DOI: https://doi.org/10.1016/S0168-1605(01)00447-0
  14. Nadia, Z., Rachid, M. (2016). Antioxidant activity of flavonoids isolated from Rosmarinus officinalis L. J. Plant Sci. Res., 3(1), 142–148.
  15. Önenç, S.S., Açıkgöz, Z., Kirkpinar, F., Küme, T., Tuğalay, C.S., Bayraktar, H.O. (2016). Chemical compositions and antioxidant activities of the essential oils of some medicinal and aromatic plants. J. Animal Produc., 57(2), 7–14.
  16. Peng, Y., Yuan, J., Liu, F., Ye, J. (2005). Determination of active components in rosemary by capillary electrophoresis with electrochemical detection. J. Pharm. Biomed. Anal., 39(3–4), 431–437. https://doi.org/10.1016/j.jpba.2005.03.033 DOI: https://doi.org/10.1016/j.jpba.2005.03.033
  17. Proestos, C., Komaitis, M. (2008). Application of microwave-assisted extraction to the fast extraction of plant phenolic compounds. LWT Food Sci. Technol. 41, 652–659. DOI: https://doi.org/10.1016/j.lwt.2007.04.013
  18. Rahbardar, M.G., Amin, B., Mehri, S., Mirnajafi-Zadeh, S.J., Hosseinzadeh, H. (2017). Antiinflammatory effects of ethanolic extract of Rosmarinus officinalis L. and rosmarinic acid in a rat model of neuropathic pain. Biomed. Pharmacother. 86, 441–449. DOI: https://doi.org/10.1016/j.biopha.2016.12.049
  19. Rahman, L., Kukerja, A.K., Singh, S.K., Singh, A., Yadav, A., Khanuja, S.P.S. (2007). Qualitative analysis of essential oil of Rosmarinus officinalis L. cultivated in Uttaranchal hills, India. J. Spices Arom. Crops., 16(1), 55–57.
  20. Ramakrishna, A., Ravishankar, G.A. (2011). Influence of abiotic stress signals on secondary metabolites in plants. Plant Signal. Behav., 6(11), 1720–1731. https://doi.org/10.4161/psb.6.11.17613 DOI: https://doi.org/10.4161/psb.6.11.17613
  21. Sanchez-Moreno, C., Larrauri, J.A., Saura-Calixto, F.A. (1998). A procedure to measure the antiradical efficiency of polyphenols. J. Sci. Food Agric., 76(2), 270–276. https://doi.org/10.1002/(SICI)1097-0010(199802)76:2<270::AID-JSFA945>3.0.CO;2-9 DOI: https://doi.org/10.1002/(SICI)1097-0010(199802)76:2<270::AID-JSFA945>3.0.CO;2-9
  22. Singleton, V., Rossi, J. (1965). Colorimetry of total phenolic compounds with phosphomolybdic-phosphotungstic acid reagents. Am. J. Enol. Vitic., 16, 144–158.
  23. Tural, S., Turhan, S. (2017). Essential oils and their mixtures antimicrobial and antioxidant properties of thyme (Thymus Vulgaris L.), rosemary (Rosmarinus officinalis L.) and laurel (Lauris nobilis L.). J. Food, 42(5), 588–596. DOI: https://doi.org/10.15237/gida.GD17030
  24. Tavassoli, S.K., Mousavi, M., Djomeh, Z.E., Razavi, S.H. (2011). Chemical composition and evaluation of antimicrobial properties of Rosmarinus officinalis L. essential oil. Afr. J. Biotechnol., 10(63), 13895–13899. https://doi.org/10.5897/AJB11.788 DOI: https://doi.org/10.5897/AJB11.788
  25. Ultee, A., Bennik, M.H.J., Moezelaar, R. (2002). The phenolic hydroxyl group of carvacrol is essential for action against the food-borne pathogen Bacillus cereus. Appl. Environ. Microbiol., 68(4), 1561–1568. https://doi.org/10.1128/AEM.68.4.1561-1568.2002 DOI: https://doi.org/10.1128/AEM.68.4.1561-1568.2002
  26. Wang, W., Wu, N., Zu, Y., Fu, Y. (2008). Antioxidative activity of Rosmarinus officinalis L. essential oil compared to its main components. Food Chem., 108(3), 1019–1022. https://doi.org/10.1016/j.foodchem.2007.11.046 DOI: https://doi.org/10.1016/j.foodchem.2007.11.046
  27. Yasar, A., Karaman, Y., Gokbulut, I., Tursun, A.O., Tursun, N., Uremis, I., Arslan, M. (2021). Chemical composition and herbicidal activities of essential oil from aerial parts of Origanum hybrids grown in different global climate scenarios on seed germination of Amaranthus palmeri. J. Essent. Oil. Bear. Plants., 24(3), 603–616. https://doi.org/10.1080/0972060X.2021.1951848 DOI: https://doi.org/10.1080/0972060X.2021.1951848
  28. Yazici, S.O., Askin, B., Kaynarca, G.B. (2020). Determination of antioxidant properties and composition of Rosemary and Thyme essential oils. Turkish J. Agric. Food Sci. Technol., 8(10), 2105–2112. https://doi.org/10.24925/turjaf.v8i10.2105-2112.3560 DOI: https://doi.org/10.24925/turjaf.v8i10.2105-2112.3560
  29. Yeddes, W., Wannes, W.A., Hammami, M., Smida, M., Chebbi, A., Marzouk, B., Tounsi, M.S. (2018). Effect of environmental conditions on the chemical composition and antioxidant activity of essential oils from Rosmarinus officinalis L. growing wild in Tunisia. J. Essent. Oil. Bear. Plants., 21(4), 972–986. https://doi.org/10.1080/0972060X.2018.1533433 DOI: https://doi.org/10.1080/0972060X.2018.1533433
  30. Yildirim, E.D. (2018). The effect of seasonal variation on Rosmarinus officinalis (L.) essential oil composition. Int. J. Agric. Wildlife Sci. (IJAWS), 4(1), 33–38. https://doi.org/10.24180/ijaws.381564 DOI: https://doi.org/10.24180/ijaws.381564
  31. Zaouali, Y., Hnia, C., Rim, T., Mohamed, B.(2013). Changes in essential oil composition and phenolic fraction in Rosmarinus officinalis L. var. typicus Batt. organs during growth and incidence on the antioxidant activity. Ind. Crops Prod., 43(1), 412–419. https://doi.org/10.1016/j.indcrop.2012.07.044 DOI: https://doi.org/10.1016/j.indcrop.2012.07.044

Downloads

Download data is not yet available.

Similar Articles

<< < 64 65 66 67 68 69 70 71 72 73 > >> 

You may also start an advanced similarity search for this article.