Skip to main navigation menu Skip to main content Skip to site footer

Vol. 22 No. 3 (2023)

Articles

Karrikins – effect on plants, interaction with other growth regulators, and potential use in horticulture

DOI: https://doi.org/10.24326/asphc.2023.4678
Submitted: March 24, 2022
Published: 2023-06-30

Abstract

Karrikins are a group of chemicals found in plant-derived smoke  from burning plant material. Till now, scientists concentrated on their effect on seed germination in plants sensitive to smoke. However, there are reports on the effect of karrikins on physiology and morphology in plants which do not occur in fire areas and are not naturally treated by smoke. These chemicals positively affect the biometric parameters of the in vitro cultured plants. Recently,  their effect on germination rate of pollen  in several species has been confirmed. They interact with plant growth regulators  enhancing their effects, for example using them together with auxins, cytokinins, gibberellins, abscisic acid or ethylene. This paper contains  a review of present research  on karrikins and proposes  perspectives of further investigations, as well as  application of these chemicals in horticultural production as a new group of plant growth regulators.

References

  1. Ahmad, A., Shahzadi, I., Mubeen, M., Yasin, N.A., Akram, W., Kan, W.U., Wu, T. (2021). Karrikinolide alleviates BDE-28, heat and Cd stressors in Brassica alboglabra by correlating and modulating biochemical attributes, antioxidative machinery and osmoregulators. Ecotoxicol. Environ. Saf., 213, 1–11. https://doi.org/10.1016/j.ecoenv.2021.112047 DOI: https://doi.org/10.1016/j.ecoenv.2021.112047
  2. Akeel, A., Khan, M.M.A., Jaleel, H., Uddin, M. (2019). Smoke-saturated water and karrikinolide modulate germination, growth, photosynthesis and nutritional values of carrots (Daucus carota L.). J. Plant Growth Regul., 38, 1387–1401. https://doi.org/10.1007/s00344-019-09941-w DOI: https://doi.org/10.1007/s00344-019-09941-w
  3. Alahakoon, A.A.C.B., Perera, G.A.D., Merritt, D.J., Turner, S.R., Gama-Arachchige, N.S. (2020). Species-specific smoke effects on seed germination of plants from different habitats from Sri Lanka. Flora, 263, 151530. https://doi.org/10.1016/j.Flora.2019.151530 DOI: https://doi.org/10.1016/j.flora.2019.151530
  4. Antala, M. (2022). Physiological roles of karrikins in plants under abiotic stress conditions. In: Emerging plant growth regulators in agriculture. Roles in stress tolerance, Aftab, T., Naeem, M. (eds.). Academic Press, 193–204. https://doi.org/10.1016/B978-0-323-91005-7.00016-3 DOI: https://doi.org/10.1016/B978-0-323-91005-7.00016-3
  5. Antala, M., Sytar, O., Rastogi, A., Brestic, M. (2020). Potential of karrikins as novel plant growth regulators in agriculture. Plants, 9(1), 43. https://doi.org/10.3390/plants9010043 DOI: https://doi.org/10.3390/plants9010043
  6. Aremu, A.O., Plačková, L., Novák, O., Stirk, W.A., Doležal, K., van Staden, J. (2016). Cytokinin profiles in ex vitro acclimatized Eucomis autumnalis plants pre-treated with smoke-derived karrikinolide. Plant Cell Rep., 35(1), 227–238. https://doi.org/10.1007/s00299-015-1881-y DOI: https://doi.org/10.1007/s00299-015-1881-y
  7. Banerjee, A., Tripathi, D.K., Roychoudhury, A. (2019). The karrikin ‘calisthenics’: Can compounds derived from smoke help in stress tolerance?. Physiol. Plant., 165(2), 290–302. https://doi.org/10.1111/ppl.12836 DOI: https://doi.org/10.1111/ppl.12836
  8. Brown, N.A.C., van Standen, J. (1997). Smoke as a germination cue: a review. Plant Growth Reg., 22(2), 115–124. https://doi.org/10.1023/A:1005852018644 DOI: https://doi.org/10.1023/A:1005852018644
  9. Bursch, K., Niemann, E.T., Nelson, D.C., Johansson, H. (2021). Karrikins control seedling photomorphogenesis and anthocyanin biosynthesis through a HY5-BBX transcriptional module. Plant J., 107, 1346–1362. https://doi.org/10.1111/tpj.15383 DOI: https://doi.org/10.1111/tpj.15383
  10. Carbonnel, S., Das, D., Varshney, K., Kołodziej, M., Villaécijai, J.A., Gutjahr C. (2020). The karrikin signaling regulator SMAX1 controls Lotus japonicus root and root hair development by suppressing ethylene biosynthesis. PNAS, 117(35), 21757–21765. https://doi.org/10.1073/pnas.2006111117 DOI: https://doi.org/10.1073/pnas.2006111117
  11. Carbonnel, S., Torabi, S., Gutjahr, C. (2021). MAX2-independent transcriptional responses to rac-GR24 in Lotus japonicus roots. Plant Signal. Behav., 16(1), 1840852. https://doi.org/10.1080/15592324.2020.1840852 DOI: https://doi.org/10.1080/15592324.2020.1840852
  12. Chiwocha, S.D.S., Dixon, K.W., Flematti, G.R., Ghisalberti, E.L., Merritt, D.J., Nelson, D.C., Riseborough, J.M., Smith, S.M., Stevens, J.C. (2009). Karrikins: A new family plant growth regulators in smoke. Plant Sci., 177(4), 252–256. https://doi.org/10.1016/j.plantsci.2009.06.007 DOI: https://doi.org/10.1016/j.plantsci.2009.06.007
  13. Cirillo, C., Rouphael, Y., Caputo, R., Raimondi, G., Sifola, M.I., De Pascale, S. (2016). Effects of high salinity and the exogenous application of an osmolyte on growth, photosythesis, and mineral composition in two ornamental shrubs. J. Hort. Sci. Biotechnol., 91(1), 14–22. https://doi.org/10.1080/14620316.2015.1110988 DOI: https://doi.org/10.1080/14620316.2015.1110988
  14. Conn, C.E., Nelson, D.C. (2016). Evidence that KARRIKIN-INSENSITIVE2 (KAI2) receptors may perceive an unknown signal that is not karrikin or strigolactone. Front. Plant Sci., 6, 1219. https://doi.org/10.3389/fpls.2015.01219 DOI: https://doi.org/10.3389/fpls.2015.01219
  15. Crisp, M.D., Burrows, G.E., Cook, L.G., Thornhill, A.H., Bowman, D.M. (2011). Flammable biomes dominated by eucalypts originated at the Cretaceous–Palaeogene boundary. Nat. Commun., 2(1), 1–8. https://doi.org/10.1038/ncomms1191 DOI: https://doi.org/10.1038/ncomms1191
  16. De Lange, J.H., Boucher, C. (1990). Autecological studies on Audouinia capitata (Bruniaceae). I. Plant-derived smoke as a seed germination cue. S. Afr. J. Bot., 56, 700–703. https://doi.org/10.1016/S0254-6299(16)31009-2 DOI: https://doi.org/10.1016/S0254-6299(16)31009-2
  17. de Saint Germain, A., Ligerot, Y., Dun, E.A., Pillot, J.P., Ross, J.J., Beveridge, C.A., Rameau, C. (2013). Strigolactones stimulate internode elongation independently of gibberellins. Plant Physiol., 163(2), 1012–1025. https://doi.org/10.1104/pp.113.220541 DOI: https://doi.org/10.1104/pp.113.220541
  18. Dixon, K.W., Merritt, D.J., Flematti, G.R., Ghisal-BertiE, L. (2009). Karrikinolide – A phytoreactive compound derived from smoke with applications in horticulture, ecological restoration and agriculture. Acta Hort., 813, 155–170. https://doi.org/10.17660/ActaHortic.2009.813.20 DOI: https://doi.org/10.17660/ActaHortic.2009.813.20
  19. Feng, Z.T., Deng, Y.Q., Fan, H., Sun, Q.J., Sui, N., Wang, B.S. (2014). Effects of NaCl stress on the growth and photosynthetic characteristics of Ulmus pumila L. seedlings in sand culture. Photosynthetica, 52(2), 313–320. https://doi.org/10.1007/s11099-014-0032-y DOI: https://doi.org/10.1007/s11099-014-0032-y
  20. Flematti, G.R., Dixon, K.W., Smith, S.M. (2015). What are karrikins and how were they ‘discovered’ by plants. BMC Biol., 13(1), 1–7. https://10.1186/s12915-015-0219-0 DOI: https://doi.org/10.1186/s12915-015-0219-0
  21. Flematti, G.R., Ghisalberti, E.L., Dixon, K.W., Trengove, R.D. (2004). A compound from smoke that promotes seed germination. Science, 305(5686), 977. https://doi.org/10.1126/science.1099944 DOI: https://doi.org/10.1126/science.1099944
  22. Flematti, G.R., Ghisalberti, E.L., Dixon, K.W., Trengove, R.D., Skelton, B.W., White, A.H. (2005). Structural analysis of a potent seed germination stimulant. Aust. J. Chem., 58(7), 505–506. https://doi.org/10.1071/CH05086 DOI: https://doi.org/10.1071/CH05086
  23. Flematti, G.R., Ghisalberti, E.L., Dixon, K.W., Trengrove, R.D. (2009). Identification of alkyl substituted 2H-furo[2,3-c]pyran-2-ones as germination stimulants present in smoke. J. Agric Food Chem., 57(20), 9475–9480. https://doi.org/10.1021/jf9028128 DOI: https://doi.org/10.1021/jf9028128
  24. Flematti, G.R., Goddard-Borger, E.D., Meritt, D.J., Gisalberti, E.I., Dixon, K.W., Trengove, R.D. (2007). Preparation of 2H-Furo[2,3-c]pyran-2-one derivatives and evaluation of their germination-promoting activity. J. Agric Food Chem., 55(6), 2189–2194. https://doi.org/10.1021/jf0633241 DOI: https://doi.org/10.1021/jf0633241
  25. Ghebrehiwot, H.M., Kulkarni, M.G., Kirkman, K.P., van Staden J. (2008). Smoke-water and a smoke-isolated butenolide improve germination and seedling vigour of Eragrostis tef (Zucc.) trotter under high temperature and low osmotic potential. J. Agron. Crop. Sci., 194(4), 270–277. https://doi.org/10.1111/j.1439-037X.2008.00321.x DOI: https://doi.org/10.1111/j.1439-037X.2008.00321.x
  26. Guercio, A.M., Boyer, F., Rameau, C., de Saint Germain, A., Shabek, N. (2021). Structural basis of KAI2 divergence in legume. bioRxiv 2021.01.06.425465. https://doi.org/10.1101/2021.01.06.425465 DOI: https://doi.org/10.1101/2021.01.06.425465
  27. Guercio, A.M., Torabi, S., Cornu, D., Dalmais, M., Bendahmane, A., Le Signor, C., Pillot, J.P., Le Bris, P., Boyer, F.D., Rameau, C., Caroline Gutjahr, C., de Saint Germain, A., Shabek, N. (2022). Structural and functional analyses explain Pea KAI2 receptor diversity and reveal stereoselective catalysis during signal perception. Commun. Biol., 5, 126. https://doi.org/10.1038/s42003-022-03085-6 DOI: https://doi.org/10.1038/s42003-022-03085-6
  28. Guo, Y.X., Zheng, Z.Y., La Clair, J.J., Chory, J., Noel J.P. (2013). Smoke-derived karrikin perception by the alpha/beta-hydrolase KAI2 from Arabidopsis. PNAS, 110(20), 8284–8289. https://doi.org/10.1073/pnas.1306265110 DOI: https://doi.org/10.1073/pnas.1306265110
  29. Gutjahr, C., Gobbato, E., Choi, J., Riemann, M., Johnston, M.G., Summers, W., Carbonnel, S., Mansfield, C., Yang, S.Y., Nadal, M., Acosta, I., Takano, M., Jiao, W.B., Schneeberger, K., Kelly, K.A., Paszkowski, U. (2015). Rice perception of symbiotic arbuscular mycorrhizal fungi requires the karrikin receptor complex. Science, 18, 350(6267), 1521–1524. https://doi.org/10.1126/science.aac9715 DOI: https://doi.org/10.1126/science.aac9715
  30. Hong, C., Wang, M., Yang, C. (2020). NADPH oxidase RbohD and ethylene signaling are involved in modulating seedling growth and survival under submergence stress. Plants, 9(4), 471. https://doi.org/10.3390/plants9040471 DOI: https://doi.org/10.3390/plants9040471
  31. Hrdlička, J., Gucký, T., Novák, O., Kulkarni, M., Gupta, S., van Staden, J., Doležal, K. (2019). Quantifcation of karrikins in smoke water using ultra-high performance liquid chromatography–tandem mass spectrometry. Plant Methods, 15(1), 1–12.https://doi.org/10.1186/s13007-019-0467-z DOI: https://doi.org/10.1186/s13007-019-0467-z
  32. Hrdlička, J., Gucký, T., van Staden, J., Novák, O., Doležal, K. (2021). A stable isotope dilution method for a highly accurate analysis of karrikins. Plant Methods, 17(1), 1–13. https://doi.org/10.1186/s13007-021-00738-1 DOI: https://doi.org/10.1186/s13007-021-00738-1
  33. Hull, R., Choi, J., Paszkowski, U. (2021). Conditioning plant for arbuscular mycorrhizal symbiosis through DWARF14-LIKE signalling. Curr. Opin. Plant Biol., 62, 1–9. https://doi.org/10.1016/j.pbi.2021.102071 DOI: https://doi.org/10.1016/j.pbi.2021.102071
  34. Isoda, R., Yoshinari, A., Ishikawa, Y., Sadoine, M., Simon, R., Frommer, W.B., Nakamura, M. (2021). Sensors for the quantification, localization and analysis of the dynamics of plant hormones. Plant J., 105(2), 542–557. https://doi.org/10.1111/tpj.15096 DOI: https://doi.org/10.1111/tpj.15096
  35. Jain, N., van Staden, J. (2006). A smoke-derived butenolide improves early growth of Tomato seedlings. Plant Growth Regul., 50(2), 139–148. https://doi.org/10.1007/s10725-006-9110-x DOI: https://doi.org/10.1007/s10725-006-9110-x
  36. Janas, K.M., Dzięgielewski, M., Szafrańska, K., Posmyk, M. (2010). Karrikiny – nowe regulatory kiełkowania nasion i wzrostu roślin [Karrikins – new regulators of seed germination and plant growth]. Kosmos, 59(3–4), 581–588 [in Polish].
  37. Jibran, R., Hunter, D.A., Dijkwel, P.P. (2013). Hormonal regulation of leafsenescence through integration of developmental and stress signals. Plant Mol. Biol., 82(6), 547–561. https://doi.org/10.1007/s11103-013-0043-2 DOI: https://doi.org/10.1007/s11103-013-0043-2
  38. Jogaiah, S., Govind, S.R., Tran, L.S. (2013). Systems biology-based approaches toward understanding drought tolerance in food crops. Crit. Rev. Biotechnol., 33(1), 23–39. https://doi.org/10.3109/07388551.2012.659174 DOI: https://doi.org/10.3109/07388551.2012.659174
  39. Kapulnik, Y., Delaux, P.M., Resnick, N., Mayzlish-Gati, E., Wininger, S., Bhattacharya, C., Séjalon-Delmas, N., Combier, J.P., Bécard, G., Belausov, E., Beeckman, T., Dor, E., Hershenhorn, J., Koltai, H. (2011). Strigolactones affect lateral root formation and root-hair elongation in Arabidopsis. Planta, 233(1), 209–216. https://10.1007/s00425-010-1310-y DOI: https://doi.org/10.1007/s00425-010-1310-y
  40. Kępczyński, J. (2018). Induction of agricultural weed seed germination by smoke and smoke derived karrikin (KAR1), with a particular reference to Avena fatua L. Acta Physiol. Plant., 40(5), 1–10. https://doi.org/10.1007/s11738-018-2663-2 DOI: https://doi.org/10.1007/s11738-018-2663-2
  41. Kępczyński, J. (2020). Progress in utilizing plant-derived smoke water and smoke-derived KAR1 in plant tissue culture. Plant Cell, Tissue Organ Cult., 140(2), 271–278. https://doi.org/10.1007/s11240-019-01739-8 DOI: https://doi.org/10.1007/s11240-019-01739-8
  42. Khatoon, A., Rehman, S.U., Aslam, M.M., Jamil, M., Komatsu, S. (2020). Plant-derived smoke affects biochemical mechanism on plant growth and seed germination. Int. J. Mol. Sci., 21(20), 1–25. https://doi.org/10.3390/ijms21207760 DOI: https://doi.org/10.3390/ijms21207760
  43. Kibria, M.G., Hoque, M.A. (2019). A review on plant responses to soil salinity and amelioration strategies. Open J. Soil Sci., 9(11), 219. https://doi.org/10.4236/ojss.2019.911013 DOI: https://doi.org/10.4236/ojss.2019.911013
  44. Kim, J.M., To, T.K., Matsui, A., Tanoi, K., Kobayashi, N.I., Matsuda, F., Habu, Y., Ogawa, D., Sakamoto, T., Matsunaga, S., Bashir, K., Rasheed, S., Ando, M., Takeda, H., Kawaura, K., Kusano, M., Fukushima, A., Endo, T.A., Kuromori, T., Ishida, J., Morosawa, T., Tanaka, M., Torii, C., Takebayashi, Y., Sakakibara, H., Ogihara, Y., Saito, K., Shinozaki, K., Devoto, A., Seki, M. (2017). Acetate-mediated novel survival strategy against drought in plants. Nat. Plants, 3, 17097. https://doi.org/10.1038/nplants.2017.97 DOI: https://doi.org/10.1038/nplants.2017.97
  45. Kulkarni, M.G., Ascough, G.D., van Staden, J. (2007). Effects of foliar applications of smoke-water and a smoke-isolated butenolide on seedling growth of Okra and Tomato. HortScience, 42(1), 179–182. https://doi.org/10.21273/HORTSCI.42.1.179 DOI: https://doi.org/10.21273/HORTSCI.42.1.179
  46. Kulkarni, M.G., Ascough, G.D., Verschaeve, L., Baeten, K., Arruda, M.P., van Staden, J. (2010). Effect of smoke-water and a smoke-isolated butenolide on the growth and genotoxicity of commercial onion. Sci. Hortic., 124(4), 434–439. https://doi.org/10.1016/j.scienta.2010.02.005 DOI: https://doi.org/10.1016/j.scienta.2010.02.005
  47. Kulkarni, M.G., Light, M.E., van Staden, J.(2011). Plant-derived smoke: old technology with possibilities for economic applications in agriculture and horticulture. S. Afr. J. Bot., 77(4), 972–979. https://doi.org/10.1016/j.sajb.2011.08.006 DOI: https://doi.org/10.1016/j.sajb.2011.08.006
  48. Kumari, A., Papenfus, H.B., Kulkarni, M.G., Pošta, M., van Staden, J. (2014). Effect of smoke derivatives on in vitro pollen germination and pollen tube elongation of species from different plant families. Plant Biol., 17(4), 825–830. https://doi.org/10.1111/plb.12300 DOI: https://doi.org/10.1111/plb.12300
  49. Li, W., Li, Q. (2017). Effect of environmental salt stress on plants and the molecular mechanism of salt stress tolerance. Int. J. Environ. Sci. Nat. Res, 7(3), 555714. https://doi.org/10.19080/IJESNR.2017.07.555714 DOI: https://doi.org/10.19080/IJESNR.2017.07.555714
  50. Li, W., Nguyen, K.H., Chu, H.D., Ha, C.V., Watanabe, Y., Osakabe, Y., Leyva-González, M.A., Sato, M., Toyooka, K., Voges, L., Tanaka, M., Mostofa, M.G., Seki, M., Seo, M., Yamaguchi, S., Nelson, D.C., Herrera-Estrella, L., Tran, L.S. (2017). The karrikin receptor KAI2 promotes drought resistance in Arabidopsis thaliana. PLoS Genetics, 13(11), e1007076. https://doi.org/10.1371/journal.pgen.1007076 DOI: https://doi.org/10.1371/journal.pgen.1007076
  51. Li, W., Tran, L.S. (2015). Are karrikins involved in plant abiotic stress responses? Trends Plant Sci., 20(9), 535–538. https://doi.org/10.1016/j.tplants.2015.07.006 DOI: https://doi.org/10.1016/j.tplants.2015.07.006
  52. Light, M.E., Daws, M.I., van Staden, J. (2009). Smoke-derived butenolide: towards understanding its biological effects. S. Afr. J. Bot., 75(1), 1–7. https://doi.org/10.1016/j.sajb.2008.10.004 DOI: https://doi.org/10.1016/j.sajb.2008.10.004
  53. Light, M.E., van Staden, J. (2004). The potential of smoke in seed technology. S. Afr. J. Bot., 70(1), 97–101. DOI: 10.1016/S0254-6299(15)30311-2 DOI: https://doi.org/10.1016/S0254-6299(15)30311-2
  54. Mathnoom, S.N., Al-Timmen, W.M.A. (2020). The effect of smoke water extract on endogenous phytohormones of Cucumis sativus L. seeds exposed to salt stress. Plant Cell Biotechnol. Mol. Biol., 21(63–64), 1–11.
  55. Meng, Y., Chen, F., Shuai, H., Luo, X., Ding, J., Tang, S., Xu, S., Liu, J., Liu, W., Du, J., Liu, J., Yang, F., Sun, X., Yong, T., Wang, X., Feng, Y., Shu, K, Yang, W. (2016). Karrikins delay soybean seed germination by mediating abscisic acid and gibberellin biogenesis under shaded conditions. Sci. Rep., 6(1), 1–12. https://doi.org/10.1038/srep22073 DOI: https://doi.org/10.1038/srep22073
  56. Meng, Y., Shuai, H., Luo, X., Chen, F., Zhou, W., Yang, W., Shu, K. (2017). Karrikins: regulators involved in phytohormone signaling networks during seed germination and seedling development. Front. Plant Sci., 7, 1–9. https://doi.org/10.3389/fpls.2016.02021 DOI: https://doi.org/10.3389/fpls.2016.02021
  57. Modi, A.T. (2002). Indigenous storage methods enhances seed vigour of traditional maize. S. Afr. J. Bot., 98(3), 138–139.
  58. Monthony, A.S., Baethke, K., Erland, L.A.E., Murch, S.J. (2020). Tools for conservation of Balsamorhiza deltoidea and Balsamorhiza sagittata: Karrikin and thidiazuron-induced growth. Vitr Cell Dev Biol – Plant, 56(3), 398–406. https://doi.org/10.1007/s11627-019-10052-0 DOI: https://doi.org/10.1007/s11627-019-10052-0
  59. Morffy, N., Faure, L., Nelson, D.C. (2016). Smoke and hormone mirrors: action and evolution of karrikin and strigolactone signaling. Trends Genet., 32(3), 176–188. https://doi.org/10.1016/j.tig.2016.01.002 DOI: https://doi.org/10.1016/j.tig.2016.01.002
  60. MousaviNik, M., Jowkar, A., RahimianBoogar, A. (2016). Positive effects of karrikin on seed germination of three medicinal herbs under drought stress. Iran Agric. Res., 35(2), 57–64.
  61. Nandal, M., Hooda, R. (2013). Salt tolerance and physiological response of plants to salinity: a review. Int. J. Sci. Eng. Res., 4(10), 44–67.
  62. Nasir, F., Li, W., Tran, L.S.P., Tian, C. (2020). Does karrikin signaling shape the rhizomicrobiome via the strigolactone biosynthetic pathway? Trends Plant Sci., 25(12), 1184–1187, https://doi.org/10.1016/j.tplants.2020.08.005 DOI: https://doi.org/10.1016/j.tplants.2020.08.005
  63. Nelson, D.C., Riseborough, J.A., Flematti, G.R., Stevens, J., Ghisalberti, E.L., Dixon, K.W., Smith, S.M. (2009). Karrikins discovered in smoke trigger Arabidopsis seed germination by a mechanism requiring gibberellic acid synthesis and light. Plant Physiol., 149(2), 863–873. https://doi.org/10.1104/pp.108.131516 DOI: https://doi.org/10.1104/pp.108.131516
  64. Oláh, D., Molnár, Á., Soós, V., Kolbert, Z. (2021). Nitric oxide is associated with strigolactone and karrikin signal transduction in Arabidopsis roots. Plant Signal. Behav., 16(3), 1868148. https://doi.org/10.1080/15592324.2020.1868148 DOI: https://doi.org/10.1080/15592324.2020.1868148
  65. Papenfus, H.B., Kumari, A., Kulkarni, M.G., Finnie, J.F., van Staden, J. (2013). Smoke-water enhances in vitro pollen germination and tube elongation of three species of Amaryllidaceae. S. Afr. J. Bot., 90, 87–92. https://doi.org/10.1016/j.sajb.2013.10.007 DOI: https://doi.org/10.1016/j.sajb.2013.10.007
  66. Papenfus, H.B., Naidoo, D., Pošta, M., Finnie, J.F., van Staden, J. (2016). The effects of smoke derivatives on in vitro seed germination and development of the leopard orchid Ansellia africana. Plant Biol., 18(2), 289–294. https://doi.org/10.1111/plb.12374 DOI: https://doi.org/10.1111/plb.12374
  67. Pošta, M., Light, M.E., Papenfus, H.B., van Staden, J., Kohout, L. (2013). Structure–activity relationships of analogs of 3,4,5-trimethylfuran-2(5H)-one with germination inhibitory activities. J. Plant Physiol., 170, 1235–1242. https://doi.org/10.1016/j.jplph.2013.04.002 DOI: https://doi.org/10.1016/j.jplph.2013.04.002
  68. Ramaih, S., Guedira, M., Paulsen, G.M. (2003). Relationship of indoleacetic acid and tryptophan to dormancy and preharvest sprouting of wheat. Funct. Plant Biol., 30(9), 939–945. https://doi.org/10.1071/FP03113 DOI: https://doi.org/10.1071/FP03113
  69. Rasmussen, A., Mason, M.G., De Cuyper, C., Brewer, P.B., Herold, S., Agusti, J., Geelen, D., Greb, T., Goormachtig, S., Beeckman, T., Beveridge, C.A. (2012). Strigolactones suppress adventitious rooting in Arabidopsis and pea. Plant Physiol., 158(4), 1976–1987. https://doi.org/10.1104/pp.111.187104 DOI: https://doi.org/10.1104/pp.111.187104
  70. Rokich, D.P., Dixon, K.W., Sivasithamnparam, K., Meney, K.A. (2002). Smoke, mulch, and seed broadcasting effect on woodland resistorian in Western Australia. Restor. Ecol., 10(2), 185–194. https://doi.org/10.1046/j.1526-100X.2002.02040.x DOI: https://doi.org/10.1046/j.1526-100X.2002.02040.x
  71. Ruzicka K., Ljung K., Vanneste S., Podhorská., R., Beeckman T., Friml J., Benková E. (2007). Ethylene regulates root growth through effects on auxin biosynthesis and transport-dependent auxin distribution. Plant Cell, 19(7), 2197–2212. https://doi.org/10.1105/tpc.107.052126 DOI: https://doi.org/10.1105/tpc.107.052126
  72. Sami, A., Riaz, M.W., Zhou, X., Zhu, Z., Zhou, K. (2019). Alleviating dormancy in Brassica oleracea seeds using NO and KAR1 with ethylene biosynthetic pathway, ROS and antioxidant enzymes modifications. BMC Plant Biol., 19(1), 577. https://doi.org/10.1186/s12870-019-2118-y DOI: https://doi.org/10.1186/s12870-019-2118-y
  73. Sami, A., Zhu, Z.H., Zhu, T.X., Zhang, D.M., Xiao, L.H., Yu, Y., (2021). Zhou, K.J. Influence of KAR1 on the plant growth and development of dormant seeds by balancing different factors. Int. J. Environ. Sci. Technol., 1–10. https://doi.org/10.1007/s13762-021-03282-6 DOI: https://doi.org/10.1007/s13762-021-03282-6
  74. Sardar, R., Ahmed, S., Yasin, N.A. (2021). Seed priming with karrikinolide improves growth and physiochemical features of Coriandrum sativum under cadmium stress. Environ. Advan., 5, 100082. https://doi.org/10.1016/j.envadv.2021.100082 DOI: https://doi.org/10.1016/j.envadv.2021.100082
  75. Setayesh, R., Kafi, M., Nabati, J. (2017). Evaluation of drought stress thresholds in ornamental Berberis (Berberis thunbergii) shrub in Mashhad condition. J. Hortic. Sci., 30(4), 714–722. https://doi.org/10.22067/jhorts4.v0i0.52183
  76. Shah, F.A., Ni, J., Tang, C., Chen, X., Kan, W., Wu, L. (2021a). Karrikinolide alleviates salt stress in wheat by regulating the redox and K+/Na+ homeostasis. Plant Physiol. Biochem., 167, 921–933. https://doi.org/10.1016/j.plaphy.2021.09.023 DOI: https://doi.org/10.1016/j.plaphy.2021.09.023
  77. Shah, F.A., Ni, J., Yao, Y., Hu, H., Wei, R., Wu, L. (2021b). Overexpression of karrikins receptor gene Sapium sebiferum KAI2 promotes the cold stress tolerance via regulating the redox homeostasis in Arabidopsis thaliana. Fron. Plant Sci., 12, 1–16. https://doi.org/10.3389/fpls.2021.657960 DOI: https://doi.org/10.3389/fpls.2021.657960
  78. Shah, F.A., Xiao, W., Wang, Q., Liu, W., Wang, D., Yao, Y., Hu, H., Chen, X., Huang, S., Hou, J., Lu, R., Liu, C., Ni, J., Wu, L. (2020). Karrikin improves osmotic and salt stress tolerance via the regulation of the redox homeostasis in the oil plant Sapium sebiferum. Fron. Plant Sci., 11, 1–14. https://doi.org/10.3389/fpls.2020.00216 DOI: https://doi.org/10.3389/fpls.2020.00216
  79. Shakirova, F.M., Avalbaev, A.M., Bezrukova, M.V., Kudoyarova, G.R. (2010). Role of endogenous hormonal system in the realization of the antistress action of plant growth regulators on plants. Plant Stress, 4(1), 32–38.
  80. Sharifi, P., Shirani Bidabadi, S. (2020). Protection against salinity stress in black cumin involves karrikin and calcium by improving gas exchange attributes, ascorbate–glutathione cycle and fatty acid compositions. SN Applied Sci., 2(12), 1–14. https://doi.org/10.1007/s42452-020-03843-3 DOI: https://doi.org/10.1007/s42452-020-03843-3
  81. Smith, S.M., Li, J. (2014). Signalling and responses to strigolactones and karrikins. Curr. Opin. Plant Biol., 21, 23–29. https://doi.org/10.1016/j.pbi.2014.06.003 DOI: https://doi.org/10.1016/j.pbi.2014.06.003
  82. van Staden, J., Jäger, A.K., Light, M.E., Burger, B.V. (2004). Isolation of the major germination cue from plant-derived smoke. S. Afr. J. Bot., 70, 654–659. https://doi.org/10.1016/S0254-6299(15)30206-4 DOI: https://doi.org/10.1016/S0254-6299(15)30206-4
  83. van Staden, J., Soarg, S.G., Kulkarni, M.G., Light, M.E. (2005). Post-germination effects of the smoke-derived compound 3-methyl-2H-furo[2,3-c]pyran-2-one, and its potential as a preconditioning agent. Field. Crops Res., 98(2–3), 98–105. https://doi.org/10.1016/j.fcr.2005.12.007 DOI: https://doi.org/10.1016/j.fcr.2005.12.007
  84. Stirnberg, P., Van de Sande, K., Leyser, O.H.M. (2002). MAX1 and MAX2 control shoot lateral branching in Arabidopsis. Develop., 129, 1131–1141. https://doi.org/10.1242/dev.129.5.1131 DOI: https://doi.org/10.1242/dev.129.5.1131
  85. Swarbreck, S.M. (2021.) Phytohormones interplay: karrikin signalling promotes ethylene synthesis to modulate roots. Trends Plant Sci., 26(4), 308–311. https://doi.org/10.1016/j.tplants.2021.02.004 DOI: https://doi.org/10.1016/j.tplants.2021.02.004
  86. Swarbreck, S.M., Guerringue, Y., Matthus, E., Jamieson, F.J.C., Davies, J.M. (2019). Impairment in karrikin but not strigolactone sensing enhances root skewing in Arabidopsis thaliana. The Plant J., 98(4), 607–621. https://doi.org/10.1111/tpj.14233 DOI: https://doi.org/10.1111/tpj.14233
  87. Thomas, T.H., van Staden, J. (1995). Dormancy break of celery (Apium graveolens L.) seeds by plant derived smoke extract. Plant Growth Regul., 17(3), 195–198. https://doi.org/10.1007/BF00024725 DOI: https://doi.org/10.1007/BF00024725
  88. Toscano, S., Ferrante, A., Romano, D. (2019). Response of Mediterranean ornamental plants to drought stress. Horticulturae, 5(6), 1–20. https://doi.org/10.3390/horticulturae5010006 DOI: https://doi.org/10.3390/horticulturae5010006
  89. Twidwell, D., Rogers, W.E., Fuhlendorf, S.D., Wonkka, C.L., Engle, D.M., Weir, J.R., Taylor Jr, C.A. (2013). The rising Great Plains fire campaign: citizens’ response to woody plant encroachment. Front. Ecol. Environ., 11(s1), e64–e71. https://doi.org/10.1890/130015 DOI: https://doi.org/10.1890/130015
  90. Wang, L., Ko, E.E., Tran, J., Qiao, H. (2020a). TREE-EIN3-mediated transcriptional repression inhibits shoot growth in response to ethylene. Proc. Natl. Acad. Sci., 117(46), 29178–29189. https://doi.org/10.1073/pnas.2018735117 DOI: https://doi.org/10.1073/pnas.2018735117
  91. Wang, R.H., Estelle, M. (2014). Diversity and specificity: Auxin perception and signaling through the TIR1/AFB pathway. Curr. Opin. Plant Biol., 21, 51–58. https://doi.org/10.1016/j.pbi.2014.06.006 DOI: https://doi.org/10.1016/j.pbi.2014.06.006
  92. Wang, Y., Diao, P., Kong, L., Yu, R., Zhang, M., Zuo, T., Fan, Y., Niu, Y., Yan, F., Wuriyanghan, H. (2020b). Ethylene enhances seed germination and seedling growth under salinity by reducing oxidative stress and promoting chlorophyll content via ETR2 pathway. Front. Plant Sci., 11, 2174. https://doi.org/10.3389/fpls.2020.01066 DOI: https://doi.org/10.3389/fpls.2020.01066
  93. Waters, M.T. (2017). From little things big things grow: karrikins and new directions in plant development. Funct. Plant Biol. 44(4), 373–385. https://doi.org/10.1071/FP16405 DOI: https://doi.org/10.1071/FP16405
  94. Waters, M.T., Nelson, D.C., Scaffidi, A., Flematti, G.R., Sun, Y.K., Dixon, K.W., Smith, S.M. (2012). Specialisation within the DWARF14 protein family confers distinct responses to karrikins and strigolactiones in Arabidopsis. Development, 139, 1285–1295. https://doi.org/10.1242/dev.074567 DOI: https://doi.org/10.1242/dev.074567
  95. Waters, M.T., Scaffidi, A., Flematii, G.R., Smith, S.M. (2013). The origins and mechanisms of karrikin signalling. Curr. Opin. Plant Biol., 16(5), 667–673. https://doi.org/10.1016/j.pbi.2013.07.005 DOI: https://doi.org/10.1016/j.pbi.2013.07.005
  96. Waters, M.T., Scaffidi, A., Sun, Y.K., Flemmatti, G.R., Smith, S.M. (2014). The karrikin response system of Arabidopsis. Plant J., 79(4), 623–631. https://doi.org/10.1111/tpj.12430 DOI: https://doi.org/10.1111/tpj.12430
  97. Yamada, Y., Furusawa, S., Nagasaka, S., Shimomura, K., Yamaguchi, S., Umehara, M. (2014). Strigolactone signaling regulates rice leaf senescence in response to a phosphate deficiency. Planta, 240(2), 399–408. https://doi.org/10.1007/s00425-014-2096-0 DOI: https://doi.org/10.1007/s00425-014-2096-0
  98. Yang, T., Lian, Y., Wang, C. (2019). Comparing and contrastin the multiple roles of butenolide plant growth regulators: strigolactones and karrikins in plant development adn adaptation to abiotic stress. Int. J. Mol. Sci., 20(24), 1–36. https://doi.org/10.3390/ijms20246270 DOI: https://doi.org/10.3390/ijms20246270
  99. Zenkteler, M. (2007). Kultura zalążków, zalążni i zarodków [Culture of ovules, ovaries and embryos]. In: Biotechnologia roślin [Plant biotechnology], Malepszy, S., (eds.). PWN, Warszawa, 70–87.

Downloads

Download data is not yet available.

Similar Articles

<< < 78 79 80 81 82 83 84 85 86 87 > >> 

You may also start an advanced similarity search for this article.