Skip to main navigation menu Skip to main content Skip to site footer

Vol. 15 No. 5 (2016)

Articles

IODINE AND SELENIUM BIOFORTIFICATION OF LETTUCE (Lactuca sativa L.) BY SOIL FERTILIZATION WITH VARIOUS COMPOUNDS OF THESE ELEMENTS

Submitted: October 29, 2020
Published: 2016-10-31

Abstract

Relatively little is known on the interaction between iodine and selenium in plants. It may become a drawback in developing agrotechnical rules of plant biofortification with these elements. The aim of the study was to determine the influence of soil fertilization with various forms of iodine (I- and IO3-) and selenium (SeO32- and SeO42-) on yield, biofortification efficiency and selected chemical properties of lettuce plants. The study (conducted in 2012–2014) included soil fertilization of lettuce cv. ‘Valeska’ in the following combinations: control (without iodine and selenium fertilization), KI, KIO3, Na2SeO4, Na2SeO3, KI +

Na2SeO4, KIO3 + Na2SeO4, KI + Na2SeO3, KIO3 + Na2SeO3. Iodine and selenium were applied twice: before sowing and as a top-dressing in a total dose of 5 kg I·ha-1 and 1 kg Se·ha-1. Only the application of Na2SeO4 (individually or together with iodine) exhibited strong toxic effect on plants which was accompanied by the highest accumulation of Se, selenomethionine (SeMet) and selenocysteine (SeCys) in lettuce. The accumulation of I and Se in lettuce was respectively higher after fertilization KI than KIO3 and Na2SeO4 than Na2SeO3. Simultaneous application of iodine and selenium decreased the level of Se, SeMet and SeCys in
lettuce - particularly in the combination with KIO3 + Na2SeO3. Simultaneous application of KI with both forms of selenium decreased iodine content in lettuce as related to the treatment with KI alone. In the case of lettuce from the combinations with KIO3, KIO3 + Na2SeO4 and KIO3 + Na2SeO3, comparable results of iodine concentration were obtained.

References

Andersson, M., de Benoist, B., Darnton-Hill, I., Delange, F. (2007). Iodine deficiency in Europe: A continuing public health problem. Geneva: World Health Organization.
Bañuelosa, G.S., Akohouea, S. (1994). Comparison of microwave digestion with block digestion for selenium and boron analysis in plant tissues. Comm. Soil Sci. Plant Anal., 25(9–10), 1655–1670. doi: 10.1080/00103629409369142
Blasco, B., Rios, J.J., Leyva, R., Cervilla, L.M., Sanchez-Rodriguez, E., Rubio-Wilhelmi, M.M., Rosales, M.A., Ruiz, J.M., Romero, L. (2010). Does iodine biofortification affect oxidative metabolism in lettuce plants? Biol. Trace Elem. Res., 142(3), 831–842. doi: 10.1007/s12011--010-8816-9.
Borowski, E., Hawrylak-Nowak, B., Michałek, S. (2014). The response of lettuce to fluorescent light and led light relative to different nitrogen nutrition of plants. Acta Sci. Pol. Hortorum Cultus, 13(5), 211–224.
Chilimba, A.D.C., Young, S.D., Black, C.R., Meacham, M.C., Lammel, J., Broadley, M.R. (2012). Assessing residual availability of selenium applied to maize crops in Malawi. Field Crop Res., 134, 11–18. doi: 10.1016/j.fcr.2012.04.010.
Cseh, E., Böszörményi, Z. (1964). The absorption and metabolism of halides and halogenates by excised wheat roots. Plant Soil, 20(3), 371–382.
Dzida, K., Jarosz, Z., Michałojć, Z., Nurzyńska-Wierdak, R. (2012a). The influence of diversified nitrogen and liming fertilization on the chemical composition of lettuce. Acta Sci. Pol. Hortorum Cultus, 11(3), 247–254.
Dzida, K., Jarosz, Z., Michalojć, Z., Nurzyńska-Wierdak, R. (2012b). The influence of diversified nitrogen and liming fertilization on the yield and biological value of lettuce. Acta Sci. Pol., Hortorum Cultus, 11(3), 239–246
Elrashidi, M.A., Adriano, D.C., Lindsay, W.L. (1989). Solubility, speciation, and transformation of selenium in soils. Am. Soc. Agron. Crop Sci. Soc. Am. Soil, 23, 51–64.
doi:10.2136/sssaspecpub23.c3
Eurola, M., Alfthan, G., Aro, A., Ekholm, P., Hietaniemi, V., Rainio, H., Rankanen, R., Venäläinen, E.R. (2003). Results of the Finnish selenium monitoring program 2000–2001. Agrifood Res. Rep., 36, 42 p.
Food and Nutrition Board – Institute of Medicine (2000). Dietary reference intakes for vitamin C, vitamin E, selenium, carotenoids. National Academy Press, Washington.
GUS (2005). Environment Protection 2005. Information and statistical analysis Central Statistical Office of Poland. Warsaw (in Polish).
Hawrylak, B., Szymańska, M., (2004). Selenium as a sulphydrylic group inductor in plants. Cell. Mol. Biol. Lett., 9, 329–336.
Kabata-Pendias, A. (2011). Trace elements in soil and plants. Fourth Edition CRC Press, Taylor and Francis Group.
Kato, S., Wachi, T., Yoshihira, K., Nakagawa, T., Ishikawa, A., Takagi, D., Tezuka, A., Yoshida, H., Yoshida, S., Sekimoto, H., Takahashi, M. (2013). Rice (Oryza sativa L.) roots have iodate reduction activity in response to iodine. Front. Plant Sci. doi: 10.3389/fpls.2013.00227
Kopeć, A., Piątkowska, E., Bieżanowska-Kopeć, R., Pysz, M., Koronowicz, A., Kapusta-Duch, J., Smoleń, S., et al. (2015). Effect of lettuce biofortified with iodine by soil fertilization on iodine concentration in various tissues and selected biochemical parameters in serum of Wistar rats. J. Funct. Foods, 14, 479–486. doi:10.1016/j.jff.2015.02.027
Kopsell, D.A., Kopsell, D.E. (2007). Selenium, in: Handbook of plant nutrition, Barker, A.V., Pilbeam, D.J. (eds). CRC Press Taylor & Francis Group, pp 515–549.
Koronowicz, A., Kopeć, A., Master, A., Smoleń, S., Piątkowska, E., Bieżanowska-Kopeć, R., Kapusta-Duch, J., Skoczylas, Ł., Ledwożyw-Smoleń, I., Rakoczy, R., Pysz, M., Leszczyńska, T. (2016). Transcriptome profiling of Caco-2 cancer cell line following treatment with extracts from iodine-biofortified lettuce (Lactuca sativa L.). PLoS ONE 11(1), e0147336. doi: 10.1371/journal.pone.0147336
Koyama, H., Takita, E., Kawamura, A., Hara, T., Shibata, D. (1999). Over expression of mitochondrial citrate synthase gene improves the growth of carrot cells in Al-phosphate medium. Plant Cell Phys., 40(5), 482–488.
Lavu, R.V.S., De Schepper, V., Steppe, K., Majeti, P.N., Tack, F., Du Laing, G. (2013). Use of selenium fertilizers for production of Se-enriched Kenaf (Hibiscus cannabinus): Effect on Se concentration and plant productivity. J. Plant Nut. Soil Sci., 176, 634–639. doi: 10.1002/jpln.201200339
Li, J., Liang, D., Qin, S., Feng, P., Wu, X. (2015). Effects of selenite and selenate application on growth and shoot selenium accumulation of pak choi (Brassica chinensis L.) during successive planting conditions. Envir. Sci. Poll. Res., 22(14), 11076–11086. doi: 10.1007/s11356--015-4344-7
Mao, H., Wang, J., Wang, Z., Zan, Y., Lyons, G., Zou, C. (2014). Using agronomic biofortification to boost zinc, selenium, and iodine concentrations of food crops grown on the loess plateau in China. J. Soil Sci. Plant Nutr., 14(2), 459–470.
McNally, S.R., 2011. “The Status of Iodine and Selenium in Waikato Soils.” Master’s thesis, The University of Waikato. Retrieved from http://researchcommons.waikato.ac.nz/handle/10289/5375 on 11 May 2016.
Ohno, T., Koyama, H., Hara, T. (2003). Characterization of citrate transport through the plasma membrane in a carrot mutant cell line with enhanced citrate excretion. Plant Cell Physiol., 44(2), 156–162. doi: 10.1093/pcp/pcg025
Pasławski, P., Migaszewski, Z.M. (2006). The quality of element determinations in plant materials by instrumental methods. Pol. J. Environ. Stud., 15(2a), 154–164.
Pitura, K., Michałojć, Z. (2012). Influence of nitrogen doses on salt concentration, yield, biological value, and chemical composition of some vegetable plant species. Part I. Yield and biological value. Acta Sci. Pol. Hortorum Cultus, 11(6), 145–153.
PN-EN 15111 (2008). Foodstuffs – Determination of trace elements – Determination of iodine by ICP-MS (inductively coupled plasma mass spectrometry). Polish Committee of Standardization, Warsaw.
Poblaciones, M.J., Rodrigo, S., Santamaría, O., Chen, Y., McGrath, S.P. (2014). Agronomic selenium biofortification in Triticum durum under Mediterranean conditions: From grain to cooked pasta. Food Chem., 146, 378–384. doi:10.1016/j.foodchem.2013.09.070
Przybysz, A., Wrochna, M., Małecka-Przybysz, M., Gawrońska, H., Gawroński, S.W. (2015). The effects of Mg enrichment of vegetable sprouts on Mg concentration, yield and ROS generation. J. Sci. Food Agric., epub. 2015 Nov 13. doi: 10.1002/jsfa.7530
Pyrzynska, K. (2009). Selenium speciation in enriched vegetables. Food Chem., 114(4), 1183–1191. doi:10.1016/j.foodchem.2008.11.026
Ramos, S.J., Faquin, V., Guilherme, L.R.G., Castro, E.M., Ávila, F.W., Carvalho, G.S., Bartos, C.E.A., Oliveira, C. (2010). Selenium biofortification and antioxidant activity in lettuce plants fed with selenate and selenite. Plant Soil Environ., 56(12), 584–588.
Ren, Q., Fan, F., Zhang, Z., Zheng, X., DeLong, G.R. (2008). An environmental approach to correcting iodine deficiency: Supplementing iodine in soil by iodination of irrigation water in remote areas. J. Trace Elem. Med. Biol., 22, 1–8. doi: 10.1016/j.jtemb.2007.09.003.
Ríos, J.J., Rosales, M.A., Blasco, B., Cervilla, L.M., Romero, L., Ruiz, J.M. (2008). Biofortification of Se and induction of the antioxidant capacity in lettuce plants. Sci. Hort., 116, 248–255. doi: 10.1016/j.scienta.2008.01.008
Ríos, J.J., Blasco, B., Cervilla, L.M., Rubio-Wilhelmi, M.M., Rosales, M.A., Sánchez-Rodríguez, E., Romero, L., Ruiz, J.M. (2010). Nitrogen-use efficiency in relation to different forms and application rates of Se in lettuce plants. J. Plant Growth Regul., 29, 164–170. doi: 10.1007/s00344-009-9130-7
Rodrigo, S., Santamaria, O., Poblaciones, M.J. (2014). Selenium application timing: Influence in wheat grain and flour selenium accumulation under mediterranean conditions. J. Agric. Sci., 6(3), 23–30. doi:http://dx.doi.org/10.5539/jas.v6n3p23
Smoleń, S., Kowalska, I., Sady, W. (2014). Assessment of biofortification with iodine and selenium of lettuce cultivated in the NFT hydroponic system. Sci. Hort., 166, 9–16. doi: 10.1016/j.scienta.2013.11.011
Smoleń, S., Ledwożyw-Smoleń, I., Sady, W. (2016). The role of exogenous humic and fulvic acids in iodine biofortification in spinach (Spinacia oleracea L.). Plant Soil., 402, 129–143. doi: 10.1007/s11104-015-2785-x
Smoleń, S., Strzetelski, P., Rożek, S., Ledwożyw-Smoleń, I. (2011). Comparison of iodine determination in spinach using 2% CH3COOH and TMAH. Acta Sci. Pol. Hortorum Cultus, 10 (3), 29–38.
Swain, T., Hillis, W.E. (1959). Phenolic constituents of Prunus domestica. I. Quantitative analysis of phenolic constituents. J. Sci. Food Agr., 10, 63–71.
Tonacchera, M., Dimida, A., De Servi, M., Frigeri, M., Ferrarini, E., De Marco, G., Grasso, L., Agretti, P., Piaggi, P., Aghini-Lombardi, F., Perata, P., Pinchera, A., Vitti, P. (2013). Iodine fortification of vegetables improves human iodine nutrition: in vivo evidence for a new model of iodine prophylaxis. J. Clinic. Endoc. Met., 98(4), E694–E697. doi: 10.1210/jc.2012-3509.
Varga, I. (2007). Iodine determination in dietary supplement products by TXRF and ICP-AES spectrometry. Microchem. J., 85, 127–131. doi:10.1016/j.microc.2006.06.014
Voogt, W., Holwerda, H.T., Khodabaks, R. (2010). Biofortification of lettuce (Lactuca sativa L.) with iodine: the effect of iodine form and concentration in the nutrient solution on growth, development and iodine uptake of lettuce grown in water culture. J. Scien. Food Agricul., 90, 906–913. doi: 10.1002/jsfa.3902.
Voogt, W., Jackson, W.A. (2010). Perchlorate, nitrate, and iodine uptake and distribution in lettuce (Lactuca sativa L.) and potential impact on background levels in humans. J. Agric. Food Chem. 58, 12192–12198. doi: 10.1021/jf101227d
Vtorushina, E.A., Saprykin, A.I., Knapp, G. (2008). Optimization of the conditions of oxidation vapor generation for determining chlorine, bromine, and iodine in aqueous solutions by inductively coupled plasma atomic-emission spectrometry. J. Anal. Chem., 63(7), 643–648. doi: 10.1134/S1061934808070071
Vtorushina, E.A., Saprykin, A.I., Knapp, G. (2009). Use of oxidation and reduction vapor generation for lowering the detection limits of iodine in biological samples by inductively coupled plasma atomic emission spectrometry. J. Anal. Chem., 64(2), 129–135. doi: 10.1134/S1061934809020063
Wińska-Krysiak, M. (2006). Calcium transporters in plants. Acta Agrophys., 7(3), 751–762 (in Polish with English abstract).
White, P.J., Broadley, M.R. (2009). Biofortification of crops with seven mineral elements often lacking in human diets – iron, zinc, copper, calcium, magnesium, selenium and iodine. New Phytol., 182(1), 49–84. doi: 10.1111/j.1469-8137.2008.02738.x
WHO (2004). Global Strategy on Diet, Physical Activity and Heath. World Health Organization. Geneva, Switzerland.
WHO (2014). Salt reduction and iodine fortification strategies in public health. Raport of a joint technical meeting convened by World Health Organization and The Global Health in collaboration with the International Council for the Control of Iodine Deficiency Disorders Global Network. Australia, March 2013. Geneva.
Yamada, H., Kiriyama, T., Yonebayashi, K. (1996). Determination of total iodine in soils by inductively coupled plasma mass spectrometry. Soil Sci. Plant Nut., 42, 859–866. doi: 10.1080/00380768.1996.10416633
Zhao, Y.Q., Zheng, J.P., Yang, M.W, Yang, G.D, Wu, Y.N., Fu, F.F. (2011). Speciation analysis of selenium in rice samples by using capillary electrophoresis-inductively coupled plasma mass spectrometry. Talanta, 84, 983–988. doi:10.1016/j.talanta.2011.03.004
Zhou, C.Y., Wong, M.K., Koh, L.L., Wee, Y.C. (1997). Evaluation of high-pressure microwave digestion methods for hydride generation atomic absorption spectrometric determination of total selenium and arsenic in sediment. Microchim. Acta, 127, 77–83. doi: 10.1007/BF01243168
Zhu, Y.G., Huang, Y., Hu, Y., Liu, Y., Christie, P. (2004). Interactions between selenium and iodine uptake by spinach (Spinacia oleracea L.) in solution culture. Plant Soil, 261, 99–105. doi: 10.1023/B:PLSO.0000035539.58054.e1
Zhu, Y.G., Pilon-Smits, E.A.H., Fang-Jie, Z., Williams, P.N., Meharg, A.A. (2009). Selenium in higher plants: understanding mechanisms for biofortification and phytoremediation. Trends Plant Sci., 14(8), 436–442. doi: 10.1016/j.tplants.2009.06.006

Downloads

Download data is not yet available.

Most read articles by the same author(s)

1 2 > >> 

Similar Articles

1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.