Skip to main navigation menu Skip to main content Skip to site footer

Vol. 22 No. 4 (2023)

Articles

Comparative leaf structural analysis of Nepeta nuda l. Plantlets, regenerated from cryopreserved shoot meristem and ex vitro-adapted plants

DOI: https://doi.org/10.24326/asphc.2023.4791
Submitted: May 23, 2022
Published: 2023-08-31

Abstract

The leaf anatomy and chloroplast ultrastructure of Nepeta nuda L. plantlets regenerated in vitro from cryopreserved shoot apical meristem and in vitro-micropropagated plantlets were studied comparatively to assess whether cryoprocedure affected leaf morphogenesis. Both postcryo and in vitro plantlets failed to develop a distinguishable palisade layer, making the mesophyll appear homogeneous. Significant damage to the chloroplast envelope and substantial thylakoid ruptures were also observed. We assumed that the specific in vitro conditions more likely affected the structures than the cryotreatment itself. Light and transmission electron microscopy observations were also carried out on newly formed leaves of ex vitro-adapted plants. The examined leaf features were similar to those in the in situ plants – bifacial leaf lamina, double-layered palisade parenchyma, loosely arranged spongy parenchyma cells, and chloroplasts with intact envelope and evenly distributed throughout the stroma internal membrane system. The obtained histological and ultrastructural results revealed the retained morphogenetic potential of N. nuda plants and proved cryopreservation as a suitable method for long-term storage.

References

  1. Acimovic, M., Loncar, B., Pezo, M., Stankovic-Jeremic, J., Cvetkovic, M., Rat, M., Pezo, L. (2022). Volatile compounds of Nepeta nuda L. from Rtanj Mountain (Serbia). Horticulturae, 8, 85. https://doi.org/10.3390/horticulturae8020085 DOI: https://doi.org/10.3390/horticulturae8020085
  2. Acimovic, M., Stankovic-Jeremic, J., Cvetkovic, M. (2020). Phyto-pharmacological aspects of Nepeta nuda L.: A systematic review. Nat. Med. Mat., 40, 75–83. https://doi.org/10.5937/leksir2040075A DOI: https://doi.org/10.5937/leksir2040075A
  3. Baranauskienė, R., Bendžiuvienėa, V., Ragažinskienė, O., Venskutonis, P.R. (2019). Essential oil composition of five Nepeta species cultivated in Lithuania and evaluation of their bioactivities, toxicity and antioxidant potential of hydrodistillation residues. Food Chem. Toxicol., 129, 269–280. https://doi.org/10.1016/j.fct.2019.04.039 DOI: https://doi.org/10.1016/j.fct.2019.04.039
  4. Baser, K.H.C., Kirimer, N., Kurkcuoglu, M., Demirci, B. (2020). Essential oils of Nepeta species growing in Turkey. Chem. Nat. Comp., 36(4), 356–359. https://doi.org/10.1023/A:1002832628159 DOI: https://doi.org/10.1023/A:1002832628159
  5. Brunáková, K., Cellárová, E. (2016). Conservation strategies in the genus Hypericum via cryogenic treatment. Front. Plant Sci., 7, 558. https://doi.org/10.3389/fpls.2016.00558 DOI: https://doi.org/10.3389/fpls.2016.00558
  6. Coelho, N., Gonçalves, S., Romano, A. (2020). Endemic plant species conservation: Biotechnological Approaches. Plants 9(3), 345. https://doi.org/https://doi.org/10.3390/plants9030345 DOI: https://doi.org/10.3390/plants9030345
  7. Dragolova, D., Rogova, M., Petrova, N., Mantovska, D., Ninov, M., Yordanova, Zh., Dimitrova, M., Zhiponova, M., Kapchina-Toteva, V. (2014). Influence of indole-3-butyric acid on Nepeta nuda spp. nuda plants regenerated after cryopreservation. Nat. Math. Sci., 4(3), 1–4.
  8. Dragolova, D., Stefanova, M., Dimitrova, M., Koleva, D., Zhiponova, M., Kapchina-Toteva, V. (2015). In vitro cultivation and ex vitro adaptation of Nepeta nuda ssp. nuda – correlation between regeneration potential, leaf anatomy, and plastid pigments. Bulg. J. Agric. Sci., 21(5), 1027–1032.
  9. Ganeva, Ts., Stefanova, M., Čellárová, E., Uzunova, K., Koleva, D. (2009). Structural responses of the photosynthetic apparatus of Orthosiphon stamineus Benth. to temperature stress after cryopreservation. Bot. Serb., 33, 163–167.
  10. Halmagyi, A., Coste, A., Tripon, S., Crăciun, C. (2017). Low temperature induced ultrastructural alterations in tomato (Lycopersicon esculentum Mill.) shoot apex cells. Sci. Hortic., 222, 22–31. https://doi.org/10.1016/j.scienta.2017.04.019 DOI: https://doi.org/10.1016/j.scienta.2017.04.019
  11. Halmagyi, A., Valimareanu, S., Sovarel, G., Coste, A. (2022) Cryo-technologies for ex situ conservation of Rosa germplasm. Plants, 11, 1095. https://doi.org/10.3390/plants11081095 DOI: https://doi.org/10.3390/plants11081095
  12. Hinkov, A., Angelova, P., Marchev, A., Hodzhev, Y., Tsvetkov, V., Dragolova, D., Todorov, D., Shishkova, K., Kapchina-toteva, V., Blundell, R., Shishkov, St., Georgiev, M. (2020). Nepeta nuda ssp. nuda L. water extract: Inhibition of replication of some strains of human alpha herpes virus (genus simplex virus) in vitro, mode of action and NMR-based metabolomics. J. Herb. Med., 21, 100334. https://doi.org/10.1016/j.hermed.2020.100334 DOI: https://doi.org/10.1016/j.hermed.2020.100334
  13. Kaviani, B., Kulus, D. (2022). Cryopreservation of endangered ornamental plants and fruit crops from tropical and subtropical regions. Biology, 11, 847. https://doi.org/10.3390/ biology11060847 DOI: https://doi.org/10.3390/biology11060847
  14. Khoshravesh, R., Hoffmann, N., Hanson, D.T. (2022). Leaf microscopy applications in photosynthesis research: identifying the gaps. J. Exp. Bot., 73(7), 1868–1893. https://doi.org/10.1093/jxb/erab548 DOI: https://doi.org/10.1093/jxb/erab548
  15. Koleva, D., Stefanova, M., Dragolova, D., Kapchina-Toteva, V, Chaneva, G. (2015). Structural and functional markers for stress response in three Hypericum species after cryopreservation. Oxid. Commun., 38(4A), 2045–2057.
  16. Kulus, D., Abratowska, A., Mikuła, A. (2019). Morphogenetic response of shoot tips to cryopreservation by encapsulation dehydration in a solid mutant and periclinal chimeras of Chrysanthemum × grandiflorum /Ramat./Kitam. Acta Physiol. Plant., 40, 18. https://doi.org/10.1007/s11738-017-2593-4 DOI: https://doi.org/10.1007/s11738-017-2593-4
  17. Kulus, D., Serocka, M., Mikuła, A. (2018). Effect of various preculture and osmotic dehydration conditions on cryopreservation efficiency and morphogenetic response of chrysanthemum shoot tips. Acta Sci. Pol. Hort. Cult., 17(1), 139–147. https://doi.org/10.24326/asphc.2018.1.13 DOI: https://doi.org/10.24326/asphc.2018.1.13
  18. O’Brien, C., Hiti-Bandaralage, J.C.A., Folgado, R., Lahmeyer, S., Hayward, A., Folsom, J., Mitter, N. (2021). First report on cryopreservation of mature shoot tips of two avocado (Persea americana Mill.) rootstocks. Plant Cell Tiss. Organ. Cult., 144, 103–113. https://doi.org/10.1007/s11240-020-01861-y DOI: https://doi.org/10.1007/s11240-020-01861-y
  19. Ren, L., Wang, M.-R., Wang, Q.-C. (2021). ROS induced oxidative stress in plant cryopreservation: occurrence and alleviation. Planta, 254, 124. https://doi.org/10.1007/s00425-021-03784-0 DOI: https://doi.org/10.1007/s00425-021-03784-0
  20. Roque-Borda, C.A., Kulus, D, Vacaro de Souza, A., Kaviani, B., Vicente, E.F. (2021). Cryopreservation of agronomic plant germplasm using vitrification-based methods: An overview of selected case studies. Int. J. Mol. Sci., 22, 6157. https://doi.org/10.3390/ ijms22116157 DOI: https://doi.org/10.3390/ijms22116157
  21. Sáez, P.L., Bravo, L.A., Sáez, K.L., Sánchez-Olate, M., Latsague, M.I., Ríos, D.G. (2012). Photosynthetic and leaf anatomical characteristics of Castanea sativa: a comparison between in vitro and nursery plants. Biol. Plant., 56(1), 15–24. https://doi.org/10.1007/s10535-012-0010-9 DOI: https://doi.org/10.1007/s10535-012-0010-9
  22. Skyba, M., Petijová, L., Kosuth, J., Koleva, D.P., Ganeva, T.G., Kapchina-Toteva, V.M., cellárová, E. (2012). Oxidative stress and antioxidant response in Hypericum perforatum L. plants subjected to low temperature treatment. J. Plant Physiol., 169, 955–964. https://doi.org/10.1016/j.jplph.2012.02.017 DOI: https://doi.org/10.1016/j.jplph.2012.02.017
  23. Stoyanova-Koleva, D., Stefanova, M., Čellárová, E., Kapchina-Toteva, V. (2013). Chloroplast ultrastructure of Hypericum perforatum plants regenerated in vitro after cryopreservation. Biol. Plant., 57(4), 793–796. DOI: https://doi.org/10.1007/s10535-013-0357-6 DOI: https://doi.org/10.1007/s10535-013-0357-6
  24. Stoyanova-Koleva, D., Stefanova, M., Ganeva, Ts., Čellárová, E. (2015). Structural modifications in the mesophyll associated with a cryopreservation of seven Hypericum species. Biol. Plant., 59(3), 514–520. https://doi.org/10.1007/s10535-015-0528-8 DOI: https://doi.org/10.1007/s10535-015-0528-8
  25. Suárez, E., Alfayate, C., Pérez-Francés, J.F., Rodríguez-Pérez, J.A. (2019). Structural and ultrastructural differences between field, micropropagated and acclimated leaves and stems of two Leucospermum cultivars (Proteaceae). PCTOC, 136, 15–27. https://doi.org/10.1007/s11240-018-1487-5 DOI: https://doi.org/10.1007/s11240-018-1487-5
  26. Whelehan, L.M., Funnekotter, B., Bunn, E., Mancera, R.L. (2022). Review: The case for studying mitochondrial function during plant cryopreservation. Plant. Sci., 315, 111134 DOI: https://doi.org/10.1016/j.plantsci.2021.111134
  27. Zhang, A.-L., Wang, M.-R., Li, Z., Panis, B., Bettoni, J.C., Vollmer, R., Xu, L., Wang, Q.-C. (2023). Overcoming challenges for shoot tip cryopreservation of root and tuber crops. Agronomy, 13, 219. https://doi.org/10.3390/agronomy13010219 2023 DOI: https://doi.org/10.3390/agronomy13010219

Downloads

Download data is not yet available.

Similar Articles

<< < 16 17 18 19 20 21 22 23 24 25 > >> 

You may also start an advanced similarity search for this article.