Skip to main navigation menu Skip to main content Skip to site footer

Vol. 20 No. 5 (2021)

Articles

Analysis of toxic elements in leaves and fruits of loquat by inductively coupled plasma-mass spectrometry (ICP-MS)

DOI: https://doi.org/10.24326/asphc.2021.5.4
Submitted: August 31, 2020
Published: 2021-10-29

Abstract

This study aimed at analyzing the content of 10 toxic elements (Be, Al, Ti, As, Cd, Sn, Sb, Hg, Pb and Ag) in different tissues (leaf blade, seed, fruit peel and pulp) of loquat fruits, at different maturity stages (immature green, mature green and full ripe) from Fujian (Yun Xiao/Zhangzhou) in China, using inductively coupled plasma-mass spectrometry (ICP-MS), with microwave digestion. Results revealed that the concentrations of Be, Al and Hg in all observed tissues were significantly reduced with the change in maturity of fruits from immature green to full ripe. Whereas the toxicity of Ti, As, Cd, Sb and Pb were observed to be shifted from seed and pulp to peel and leaves. Tin concentration was increased in all observed tissues except seeds, while silver concentration was only increased in fruit peel of loquat. In sum up, toxic elements concentration detected in the fruit pulp of loquat, at full ripe stage, was found safe for human consumption.

References

  1. ATSDR (2002). Toxicological profile for beryllium. In: ATSDR’s Toxicological Profiles. Available: https://www.atsdr.cdc.gov/toxprofiles/tp4.pdf
  2. Bressy, F.C., Brito, G.B., Barbosa, I.S., Teixeira, L.S.G., Korn, M.G.A. (2013). Determination of trace element concentrations in tomato samples at different stages of maturation by ICP OES and ICP-MS following microwave-assisted digestion. Microchem. J., 109, 145–149. https://doi.org/10.1016/j.microc.2012.03.010
  3. Castro-González, M.I., Méndez-Armenta, M. (2008). Heavy metals: Implications associated to fish consumption. Environ. Toxicol. Pharmacol., 26(3), 263–271. https://doi.org/10.1016/j.etap.2008.06.001
  4. Chen, Y., Li, T.Q., Han, X., Ding, Z.L., Yang, X.E., Jin, Y.F. (2012). Cadmium accumulation in different pakchoi cultivars and screening for pollution-safe cultivars. J. Zhejiang Univ. Sci., B 13, 494–502. https://doi.org/10.1631/jzus.B1100356
  5. Corelli-Grappadelli, L., Lakso, A.N. (2004). Fruit developemtn in deciduous tree crops as affected by physiological factors and environmental conditions (keynote). Acta Hortic., 636, 425–441. https://doi.org/10.17660/ActaHortic.2004.636.52
  6. De Blas Bravo, I., Sanz Castro, R., López Riquelme, N., Tormo Díaz, C., Apraiz Goyenaga, D. (2007). Optimization of the trace element determination by ICP-MS in human blood serum. J. Trace Elem. Med. Biol., 21, 14–17. https://doi.org/10.1016/j.jtemb.2007.09.017
  7. European Commission (2002). Assessment of dietary intake of ochratoxin A by the population of EU member states. Reports on tasks for scientific cooperation. Available: https://ec.europa.eu/food/system/files/2016-10/cs_contaminants_catalogue_ochratoxin_task_3-2-7_en.pdf
  8. Farid, A.T.M., Roy, K.C., Hossain, K.M., Sen, R. (2003). A study of arsenic contaminated irrigation water and its carried over effect on vegetable. In: Proceedings of the International Symposium on Fate of Arsenic in the Environment, Dhaka, Bangladesh, 113–121.
  9. Guerra, F., Ricardo Trevizam, A., Muraoka, T., Chaves Marcante, N., Guidolin Canniatti-Brazaca, S. (2012). Heavy metals in vegetables and potential risk for human health. Sci. Agric., 69(1), 54–60. https://doi.org/10.1590/S0103-90162012000100008
  10. Hajeb, P., Sloth, J.J., Shakibazadeh, S., Mahyudin, N.A., Afsah-Hejri, L. (2014). Toxic elements in food: Occurrence, binding, and reduction approaches. Compr. Rev. Food Sci. Food Saf., 13(4), 457–472. https://doi.org/10.1111/1541-4337.12068
  11. He, Z.L., Yang, X.E., Stoffella, P.J. (2005). Trace elements in agroecosystems and impacts on the environment. J. Trace Elem. Med. Biol., 19(2–3), 125–140. https://doi.org/10.1016/j.jtemb.2005.02.010
  12. Heitkemper, D.T., Kubachka, K.M., Halpin, P.R., Allen, M.N., Shockey, N.V. (2009). Survey of total arsenic and arsenic speciation in us-produced rice as a reference point for evaluating change and future trends. Food Addit. Contam. Part B Surveill., 2(2), 112–120. https://doi.org/10.1080/02652030903148298
  13. Huang, R.Q., Gao, S.F., Wang, W.L., Staunton, S., Wang, G. (2006). Soil arsenic availability and the transfer of soil arsenic to crops in suburban areas in Fujian Province, southeast China. Sci. Total Environ., 368(2–3), 531–541. https://doi.org/10.1016/j.scitotenv.2006.03.013
  14. Kabata-Pendias, A. (2010). Trace elements in soils and plants, 4th ed. https://doi.org/10.1201/b10158
  15. LaRue, R.G. (2020). Loquat Fact Sheet. Fruit Nut Res. Inf. Center, Univ. Calif. Available: http://fruitsandnuts.ucdavis.edu/dsadditions/Loquat_Fact_Sheet/ [date of access: 30.01.2020].
  16. Lu, Z.M., Zhang, Z.L., Wu, W.X., Li, W.H. (2007). Effect of low temperatures on postharvest loquat fruit. Acta Hortic., 750, 483–486. https://doi.org/10.17660/ActaHortic.2007.750.77
  17. Madejon, P., Maranon, T., Mmurillo, J. (2006). Biomonitoring of trace elements in the leaves and fruits of wild olive and holm oak trees. Sci. Total Environ., 355(1–3), 187–203. https://doi.org/10.1016/j.scitotenv.2005.02.028
  18. Nieder, R., Benbi, D.K., Reichl, F.X. (2018). Role of potentially toxic elements in soils. In: Soil components and human health, Nieder, R., Benbi, D.K., Reichl, F.X. Springer Netherlands, Dordrecht, 375–450. https://doi.org/10.1007/978-94-024-1222-2_8
  19. Pem, D., Jeewon, R. (2015). Fruit and vegetable intake: Benefits and progress of nutrition education interventions-narrative review article. Iran. J. Public Health, 44(10), 1309–1321.
  20. Rahman, M.A., Hasegawa, H. (2011). High levels of inorganic arsenic in rice in areas where arsenic-contaminated water is used for irrigation and cooking. Sci. Total Environ., 409(22), 4645–4655. https://doi.org/10.1016/j.scitotenv.2011.07.068
  21. Satarug, S. (2018). Dietary cadmium intake and its effects on kidneys. Toxics, 6(1), 15. https://doi.org/10.3390/toxics6010015
  22. Silva, S. (2012). Aluminium toxicity targets in plants. J. Bot., 1–8. https://doi.org/10.1155/2012/219462
  23. Singh, M.K., Dwivedi, S., Yadav, S.S., Sharma, P., Khattri, S. (2014). Arsenic-induced hepatic toxicity and its attenuation by fruit extract of Emblica officinalis (Amla) in Mice. Indian J. Clin. Biochem., 29, 29–37. https://doi.org/10.1007/s12291-013-0353-9
  24. Slavin, J.L., Lloyd, B. (2012). Health benefits of fruits and vegetables. Adv. Nutr., 3(4), 506–516. https://doi.org/10.3945/an.112.002154
  25. Sridhara Chary, N., Kamala, C.T., Samuel Suman Raj, D. (2008). Assessing risk of heavy metals from consuming food grown on sewage irrigated soils and food chain transfer. Ecotoxicol. Environ. Saf., 69(3), 513–524. https://doi.org/10.1016/j.ecoenv.2007.04.013
  26. Tangahu, B.V., Sheikh Abdullah, S.R., Basri, H., Idris, M., Anuar, N., Mukhlisin, M. (2011). A review on heavy metals (As, Pb, and Hg) uptake by plants through phytoremediation. Int. J. Chem. Eng., 939161. https://doi.org/10.1155/2011/939161
  27. Tian, S., Qin, G., Li, B. (2011). Loquat. Postharvest Biol. Technol. Trop. Subtrop. Fruits, 444. https://doi.org/10.1016/B978-1-84569-735-8.50017-6
  28. TSDR (2012). Toxicological profile for cadmium, Toxicological Profile. Available: https://www.atsdr.cdc.gov/toxprofiles/tp5.pdf
  29. USDA (2018). National Food Safety Standard of Maximum Levels of Contaminants in Foods.
  30. WHO (2015). Food safety. Available: https://www.who.int/campaigns/world-health-day/2015/fact-sheet.pdf
  31. Wuana, R.A., Okieimen, F.E. (2011). Heavy metals in contaminated soils: A review of sources, chemistry, risks and best available strategies for remediation. Int. Schol. Res. Not. Ecol., 1–20. https://doi.org/10.5402/2011/402647

Downloads

Download data is not yet available.

Similar Articles

1 2 3 4 5 6 7 8 > >> 

You may also start an advanced similarity search for this article.