Skip to main navigation menu Skip to main content Skip to site footer

Vol. 22 No. 6 (2023)

Articles

Functional characterization of ZjPYL8 from sour jujube: enhancing the sensitivity of stomata and roots to ABA in Arabidopsis thaliana

DOI: https://doi.org/10.24326/asp.hc.2023.5154
Submitted: April 19, 2023
Published: 2023-12-22

Abstract

Abscisic acid (ABA) is a plant hormone that plays a crucial role in regulating plant growth, development, and adaptation to stress. The growth of Ziziphus jujuba Mill. var. spinosa (Bunge) Hu ex H. Chou, commonly known as Suanzao in Chinese, is significantly influenced by environmental factors, particularly drought and salt stresses. In this study, we isolated and characterized a putative ABA receptor, ZjPYL8, from Sour jujube. To investigate the effects of ZjPYL8 overexpression on ABA-responsive pathways, we introduced it into Arabidopsis thaliana (A. thaliana) and examined the resulting phenotypes. Our results demonstrated that overexpression of ZjPYL8 in A. thaliana led to a significant reduction in stomatal aperture and root length under ABA treatment, while the wild type (WT) was relatively insensitive to ABA. Moreover, ZjPYL8 transgenic plants exhibited shorter roots under salt treatment than the WT did. These findings suggest that the overexpression of ZjPYL8 in A. thaliana enhances the plant's resistance to stress and support the hypothesis that ZjPYL8 serves as a putative ABA receptor in Sour jujube, which may improve the plant's adaptability to drought and salt stresses. ZjPYL8 appears to mediate plant responses to ABA, similar to most ABA receptors in A. thaliana, such as stomatal closure and root length.

References

  1. Aleman, F., Yazaki, J., Lee, M., Takahashi, Y., Kim, A.Y., Li, Z., Kinoshita, T., Ecker, J.R., Schroeder, J.I. (2016). An ABA-increased interaction of the PYL6 ABA receptor with MYC2 transcription factor: a putative link of ABA and JA signaling. Sci. Rep. 6, 1–10. https://doi.org/10.1038/srep28941 DOI: https://doi.org/10.1038/srep28941
  2. Belda, P.B., Gonzalez, G.M.-P., Lozano, J.J., Coego, A., Antoni, R., Julian, J., Peirats, L.M., Rodriguez, L., Berbel, A., Dietrich, D.J. (2018). PYL8 mediates ABA perception in the root through non-cell-autonomous and ligand-stabilization–based mechanisms. Proc. Nat. Acad. Sci., 115, E11857–E11863. https://doi.org/10.1073/pnas.1815410115 DOI: https://doi.org/10.1073/pnas.1815410115
  3. Cutler, S.R., Rodriguez, P.L., Finkelstein, R.R., Abrams, S.R. (2010). Abscisic acid: emergence of a core signaling network. Ann. Rev. Plant Biol., 61, 651–679. https://doi.org/10.1146/annurev-arplant-042809-112122 DOI: https://doi.org/10.1146/annurev-arplant-042809-112122
  4. Deak, K.I., Malamy, J. (2005). Osmotic regulation of root system architecture. Plant J., 43, 17–28. https://doi.org/10.1111/j.1365-313X.2005.02425.x DOI: https://doi.org/10.1111/j.1365-313X.2005.02425.x
  5. Fernando, V.D., Schroeder, D.F. (2016). Role of ABA in Arabidopsis salt, drought, and desiccation tolerance. IntechOpen, 56, 230–239. https://doi.org/10.5772/61957 DOI: https://doi.org/10.5772/61957
  6. Fujii, H., Chinnusamy, V., Rodrigues, A., Rubio, S., Antoni, R., Park, S.-Y., Cutler, S.R., Sheen, J., Rodriguez, P.L., Zhu, J.-K.J.N. (2009). In vitro reconstitution of an abscisic acid signalling pathway. Nature, 462, 660–664. https://doi.org/10.1038/nature08599 DOI: https://doi.org/10.1038/nature08599
  7. He, S., Liang, Z., Yu, L., Zhou, Z.S. (2009). Growth and physiological characteristics of wild sour jujube seedlings from two provenances under soil water stress. Acta Bot. Boreal.-Occid. Sin., 29, 1387–1393. https://kns.cnki.net/kcms/detail/detail.aspx?FileName=DNYX200907020&DbName=CJFQ2009
  8. Jones, H.A. (1920). Physiological study of maple seeds. Bot. Gaz., 69, 127–152. https://www.jstor.org/stable/2469344 DOI: https://doi.org/10.1086/332622
  9. LaRosa, P.C., Hasegawa, P.M., Rhodes, D., Clithero, J.M., Watad, A.-E.A., Bressan, R.A. (1987). Abscisic acid stimulated osmotic adjustment and its involvement in adaptation of tobacco cells to NaCl. Plant Physiol., 85, 174–181. https://doi.org/10.1104/pp.85.1.174 DOI: https://doi.org/10.1104/pp.85.1.174
  10. Lee, H.-N., Lee, K.-H., Kim, C.S. (2015). Abscisic acid receptor PYRABACTIN RESISTANCE-LIKE 8, PYL8, is involved in glucose response and dark-induced leaf senescence in Arabidopsis. Biochem. Biophys. Res. Comm., 463, 24–28. https://doi.org/10.1016/j.bbrc.2015.05.010 DOI: https://doi.org/10.1016/j.bbrc.2015.05.010
  11. Lim, C.W., Baek, W., Han, S.-W., Lee, S.C. (2013). Arabidopsis PYL8 plays an important role for ABA signaling and drought stress responses. Plant Pathol. J., 29, 471. https://doi.org/10.5423/PPJ.NT.07.2013.0071 DOI: https://doi.org/10.5423/PPJ.NT.07.2013.0071
  12. Liu, M., Cheng, J.R. (1994). A taxonomic study on Chinese jujube and wild jujube. J. Hebei Agric. Univ., 17, 1–10. https://kns.cnki.net/kcms/detail/detail.aspx?FileName=CULT404.000&DbName=CJFQ1994
  13. Ma, Y., Szostkiewicz, I., Korte, A., Moes, D., Yang, Y., Christmann, A., Grill, E. (2009). Regulators of PP2C phosphatase activity function as abscisic acid sensors. Science, 324, 1064–1068. https://doi.org/10.1126/science.1172408 DOI: https://doi.org/10.1126/science.1172408
  14. Ming, W., Yun-wei, S.E. (1986). Fruit trees and vegetables for arid and semi-arid areas in north-west China. J. Arid Environ., 11, 3–16. https://doi.org/10.1016/S0140-1963(18)31305-3 DOI: https://doi.org/10.1016/S0140-1963(18)31305-3
  15. Park, S.-Y., Fung, P., Nishimura, N., Jensen, D.R., Fujii, H., Zhao, Y., Lumba, S., Santiago, J., Rodrigues, A., Tsz-fung, F.C. (2009). Abscisic acid inhibits type 2C protein phosphatases via the PYR/PYL family of START proteins. Science, 324, 1068–1071. https://doi.org/10.1126/science.1173041 DOI: https://doi.org/10.1126/science.1173041
  16. Qi, L., Liu, S., Li, C., Fu, J., Jing, Y., Cheng, J., Li, H., Zhang, D., Wang, X., Dong, X.J. (2020a). Phytochrome-interacting factors interact with the ABA receptors PYL8 and PYL9 to orchestrate ABA signaling in darkness. Mol. Plant., 13, 414–430. https://doi.org/10.1016/j.molp.2020.02.001 DOI: https://doi.org/10.1016/j.molp.2020.02.001
  17. Qi, L., Zheng, Y., Wang, P., Song, J., Jing, S., Xu, L., Zhou, X., Hao, Z., Yan, Y., Liu, Z. (2020b). Overexpression of a sour jujube gene ZjPYR1, encoding a putative abscisic acid receptor, increases sensitivity of the stomata and roots to ABA in Arabidopsis thaliana. Gene Exp. Patt., 36, 119117. https://doi.org/10.1016/j.gep.2020.119117 DOI: https://doi.org/10.1016/j.gep.2020.119117
  18. Saavedra, X., Modrego, A., Rodríguez, D., González-García, M.P., Sanz, L., Nicolás, G., Lorenzo, O. (2010). The nuclear interactor PYL8/RCAR3 of Fagus sylvatica FsPP2C1 is a positive regulator of abscisic acid signaling in seeds and stress. Plant Physiol., 152, 133–150. https://doi.org/10.1104/pp.109.146381 DOI: https://doi.org/10.1104/pp.109.146381
  19. Soon, F.-F., Ng, L.-M., Zhou, X.E., West, G.M., Kovach, A., Tan, M.E., Suino-Powell, K.M., He, Y., Xu, Y., Chalmer, M.J. (2012). Molecular mimicry regulates ABA signaling by SnRK2 kinases and PP2C phosphatases. Science, 335, 85–88. https://doi.org/10.1126/science.1215106 DOI: https://doi.org/10.1126/science.1215106
  20. Wang, G., Wei, Z., He, S., Zhou, X., Liang, Z.J. (2011). Effects of drought stress in soil on flavonoids metabolism in leaf and some growth and physiological indexes of Ziziphus jujuba var. spinosa. J. Plant Res. Environ., 20, 1–8. https://kns.cnki.net/kcms/detail/detail.aspx?FileName=ZWZY201103001&DbName=CJFQ2011
  21. Xing, L., Zhao, Y., Gao, J., Xiang C., Zhu, J.-K. (2016). The ABA receptor PYL9 together with PYL8 plays an important role in regulating lateral root growth. Sci. Rep., 6, 1–13. https://doi.org/10.1038/srep27177 DOI: https://doi.org/10.1038/srep27177
  22. Yan, H., Jia, H., Chen, X., Hao, L., An, H., Guo, X.J.P. (2014). The cotton WRKY transcription factor GhWRKY17 functions in drought and salt stress in transgenic Nicotiana benthamiana through ABA signaling and the modulation of reactive oxygen species production. Plant Cell Physiol., 55, 2060–2076. https://doi.org/10.1093/pcp/pcu133 DOI: https://doi.org/10.1093/pcp/pcu133
  23. Zhao, Y., Chan, Z., Gao, J., Xing, L., Cao, M., Yu, C., Hu, Y., You, J., Shi, H., Zhum J.K. (2016). ABA receptor PYL9 promotes drought resistance and leaf senescence. Proc. Nat. Acad. Sci., 113, 1949–1954. https://doi.org/10.1073/pnas.1522840113 DOI: https://doi.org/10.1073/pnas.1522840113
  24. Zhao, Y., Xing, L., Wang, X., Hou, Y.-J., Ga, J., Wang, P., Duan, C.-G., Zhu, X., Zhu J.-K. (2014). The ABA receptor PYL8 promotes lateral root growth by enhancing MYB77-dependent transcription of auxin-responsive genes. Sci. Signal., 7, ra53-ra53. https://doi.org/10.1126/scisignal.2005051 DOI: https://doi.org/10.1126/scisignal.2005051
  25. Zhu, J.-K. (2002). Salt and drought stress signal transduction in plants. Ann. Rev. Plant Biol., 53, 247–273. https://doi.org/10.1146/annurev.arplant.53.091401.143329 DOI: https://doi.org/10.1146/annurev.arplant.53.091401.143329

Downloads

Download data is not yet available.

Similar Articles

<< < 13 14 15 16 17 18 19 20 21 22 > >> 

You may also start an advanced similarity search for this article.