Przejdź do głównego menu Przejdź do sekcji głównej Przejdź do stopki

Tom 19 Nr 2 (2020)

Artykuły

COMPARISON OF VAPOR-PHASE ACETIC ACID AND VINEGAR EFFECTIVENESS IN MAINTAINING QUALITY OF SWEET BASIL (OCIMUM BASILICUM LINN.)

DOI: https://doi.org/10.24326/asphc.2020.2.6
Przesłane: 24 kwietnia 2020
Opublikowane: 2020-04-24

Abstrakt

Leafy shoots of sweet basil (Ocimum basilicum Linn.) were exposed to the vapor of either dilute acetic acid (AA) or of upland rice vinegar (URV) – both solutions were diluted to contain 4% of acetic acid – for 10 min and stored at 12°C. The sweet basil exposure to AA had a 16% increase in shelf life and those exposures to URV 35% increase compare to the control. There were no significant differences in fresh weight loss during storage between the AA and URV but both had significantly lower fresh weight losses than the control. The chlorophyll content of both AA and URV were significantly higher than the control. The radical scavenging was significantly higher in the URV than in the AA and the control. The electrolyte leakage was both significantly lower in the URV than in the AA and the control. The occurrence of lipid peroxidation was similar in both the AA and URV, and both were significantly lower than in the control. These results indicate URV has potential as an effective way of raising quality and extending postharvest storage of sweet basil shoots.

Bibliografia

  1. Aharoni, N., Kenigsbuch, D., Chalupowicz, D., Faura-Mlinski, M., Aharon, Z., Maurer, D., Ovadia, A., Amnon Lers, A. (2010). Reducing chilling injury and decay in stored sweet basil. Isr. J. Plant Sci., 58, 167–181. DOI: 10.1560/IJPS.58.3-4.167
  2. Arora, A., Sairam, R.K., Srivastava, G.C. (2002). Oxidative stress and antioxidant system in plants. Curr. Sci., 82, 1227–1238.
  3. Benja-Tal, S., Borochov, A. (1994). Age-related changes in biochemical and physical properties of carnation petal plasma membranes. J. Plant Physiol., 143, 195–199. DOI: 10.1016/S0176-1617(11)81686-X
  4. Blackbourn, H.D., Jeger, M.J., John, P. (1990). Inhibition of degreening in the peel of bananas ripened at tropical temperatures IV. Chlorophyll bleaching measured in vivo. Ann. Appl. Biol., 117, 175–186. DOI: 10.1111/j.1744-7348.1990.tb04204.x
  5. Cantwell, M.I., Reid, M.S. (2002). Postharvest handling systems: fresh herbs. In: Postharvest technology of horticultural crops, Kader, A. (ed.). University of California Press, Davis, 327–331.
  6. Changsawake, K., Krusong, W., Laosinwattana, C., Teerarak, M. (2017). Retarding changes of postharvest qualities of sweet basil (Ocimum basilicum Linn.) by vapor-phase vinegar. J. Herbs Spices Med. Plants, 23, 284–298. DOI: 10.1080/10496475.2017.1329176
  7. Cheour, F., Arul, J., Makhlouf, J., Willemot, C. (1992). Delay of membrane lipid degradation by calcium treatment during cabbage leaf senescence. Plant Physiol., 100, 1656–1660. DOI: 10.1104/pp.100.4.1656
  8. Costa, L., Montano, Y.M., Carrion, C., Rolny, N., Guiamet, J.J. (2013). Application of low intensity light pulses to delay postharvest senescence of Ocimum basilicum leaves. Postharvest Biol. Techol., 86, 181–191. DOI: 10.1016/j.postharvbio.2013.06.017
  9. Dan, K., Nagata, M., Yamashita, I., (1996). Changes in lipid peroxidation and antioxidants content in cotyledons of Japanese radish. J. Jpn. Soc. Hortic. Sci., 65, 603–608. DOI: 10.2503/jjshs.65.603
  10. Duan, X.W., Liu, T., Zhang, D., Su, X.G., Lin, H.T., Jiang, Y.M. (2011). Effect of pure oxygen atmosphere on antioxidant enzyme and antioxidant activity of harvested litchi fruit during storage. Food Res. Int., 44, 1905–1911. DOI: 10.1016/j.foodres.2010.10.027
  11. Glowacz, M., Mogren, L.M., Reade, J.P.H., Cobb, A.H., Monaghan, J.M. (2013). Can hot water treatments enhance or maintain postharvest quality of spinach leaves?. Postharvest Biol. Technol., 81, 23–28. DOI: 10.1016/j.postharvbio.2013.02.004
  12. Hassan, F.A.S., Ali, E.F., El-Deeb, B. (2014). Improvement of postharvest quality of cut rose cv. ‘First Red’ by biologically synthesized silver nanoparticles. Sci. Hortic., 179, 340–348. DOI: 10.1016/j.scienta.2014.09.053
  13. Hassan, F.A.S., Mahfouz, S.A. (2010). Effect of 1-methylcyclopropene (1-MCP) treatment on sweet basil leaf senescence and ethylene production during shelf-life. Postharvest Biol. Technol., 55, 61–65. DOI: 10.1016/j.postharvbio.2009.07.008
  14. Hassenberg, K., Geyer, M., Herpdich, W.B. (2010). Effect of acetic acid vapour on the natural microflora and Botrytis cinerea of strawberries. Eur. J. Hortic. Sci., 75, 141–146.
  15. Heath, R.L., Packer, L. (1968). Photoperoxidation in isolated chloroplasts. I. Kinetics and stoichiometry of fatty acid peroxidation. Arch. Biochem. Biophys., 125, 189–198.
  16. Krusong, W., Jindaprasert, A., Laosinwattana, C., Teerarak, M. (2015a). Baby corn fermented vinegar and its vapour control postharvest decay in strawberries. N. Z. J. Crop Hortic. Sci., 41, 193–203. DOI: 10.1080/01140671.2015.1013558
  17. Krusong, W., Teerarak, M., Laosinwattana, C. (2015b). Liquid and vapour phase vinegar reduces Klebsiella pneumonia on fresh coriander. Food Control, 50, 502–508. DOI: 10.1016/j.foodcont.2014.09.051
  18. Lang, D.D., Cameron, A.C. (1994). Postharvest shelf-life of sweet basil (Ocimum basilicum). HortScience, 29, 577–584.
  19. Lemoine, M.L., Civello, P.M., Chavesl, A.R., Martinez, G.A. (2010). Influence of a combined hot air and UV-C treatment on quality parameters of fresh-cut broccoli florets at 0°C. J. Food Sci. Technol., 45, 1212–1218. DOI: 10.1111/j.1365-2621.2010.02269.x
  20. Li, W.X., Zhang, M., Wang, S.J. (2008). Effect of three-stage hypobaric storage on membrane lipid peroxidation and activities of defense enzyme in green asparagus. LWT – Food Sci. Technol., 41, 2175–2181. DOI: 10.1016/j.lwt.2007.11.008
  21. Lichtenthaler, H.K. (1987). Chlorophylls and carotenoids: pigments of photosynthetic membranes. Methods Enzymol., 148, 350–382. DOI: 10.1016/0076-6879(87)48036-1
  22. Lüthy, B., Martinoia, E., Matile, P. (1984). Thylakoid-associated “chlorophyll oxidase”: distinction from lipoxygenase. Z. Pflanzenphysiol., 113, 423–434.
  23. Meir, S., Ronen, R., Lurie, S., Hadas, S. (1997). Assessment of chilling injury during storage: chlorophyll fluorescence characteristics of chilling-susceptible and triazole-induced chilling tolerant basil leaves. Postharvest Biol. Techol., 10, 213–220. DOI: 10.1016/S0925-5214(97)01410-5
  24. Miliauskas, G., Venskutonis, P.R., Beek, T.A. van (2004). Screening of radical scavenging activity of some medicinal and aromatic plant extracts. Food Chem., 85, 231–237. DOI: 10.1016/j.foodchem.2003.05.007
  25. Scarth, G.W. (1932). Mechanism of the action of light and other factors on stomata movement. Plant Physiol., 7, 481–504.
  26. Sholberg, P., Haag, P., Hocking, R., Bedford, K. (2000). The use of vinegar vapor to reduce postharvest decay of harvested fruit. HortScience, 35, 898–903.
  27. Sholberg, P.L., Shephard, T., Randall, P., Moyls, L. (2004). Use of measured concentrations of acetic acid vapor to control postharvest decay in d’Anjou pears. Postharvest Biol. Technol., 32, 89–98. DOI: 10.1016/j.postharvbio.2003.09.014
  28. Tavallali, V. (2018). Vacuum infiltration of 24-epibrassinolide delays chlorophyll degradation and maintains quality of lime during cold storage. Acta Sci. Pol. Hortorum Cultus, 17, 35–48. DOI: 10.24326/asphc.2018.1.4
  29. Venditti, T., Ladu, G., Cubaiu, L., Myronycheva, O., D’hallewin, G. (2017). Repeated treatments with acetic acid vapors during storage preserve table grapes fruit quality. Postharvest Biol. Technol., 125, 91–98. DOI: 10.1016/j.postharvbio.2016.11.010
  30. Wells, J.M., Butterfield, J.E. (1999). Incidence of Salmonella on fresh fruits and vegetables affected by fungal rots or physical injury. Plant Dis., 83, 722–226. DOI: 10.1094/PDIS.1999.83.8.722
  31. Zhang, Q., Zhang, S., Xie, C., Zeng, D., Fan, C., Li, D., Bai, Z. (2006). Characterization of chinese vinegars by electronic nose. Sens. Actuators. B., 119, 538–546. DOI: 10.1016/j.snb.2006.01.007
  32. Zhuang, H., Hildebrand, D.F., Barth, M.M. (1995). Senescence of broccoli buds is related to changes in lipid peroxidation. J. Agr. Food Chem., 43, 2585–2591. DOI: 10.1021/jf00058a006

Downloads

Download data is not yet available.

Podobne artykuły

<< < 42 43 44 45 46 47 48 49 50 51 > >> 

Możesz również Rozpocznij zaawansowane wyszukiwanie podobieństw dla tego artykułu.