Przejdź do głównego menu Przejdź do sekcji głównej Przejdź do stopki

Tom 20 Nr 2 (2021)

Artykuły

THE RESPONSE OF DIFFERENT FERTILIZER APPLICATIONS ON CHAMOMILE PRODUCTION AND THEIR QUALITY CHARACTERISTICS: Medicinal plants

DOI: https://doi.org/10.24326/asphc.2021.2.11
Przesłane: 8 maja 2020
Opublikowane: 2021-04-28

Abstrakt

Chamomile is one of the well-known herbs in the world, with numerous medicinal, cosmetic and health benefits. In this study, a factorial experiment was conducted in a randomized complete block design technique to evaluate the three different dosses of nitrogen (N1 = 0, N2 = 50 and N3 = 100 kg·ha–1) from urea 46%, and three different vermicompost dosses (V1 = 0, V2 = 4 and V3 = 8 t.ha–1) and three different zeolite superabsorbent levels (S1 = 0, S2 = 50 and S3 = 100 kg·ha–1) on flower yield and essential oil of Chamomile in Kazeroon, Fars province in 2017. The results showed that increasing the amount of nitrogen and vermicompost increased the plant height, flower diameter, number of flowers, flower yield, essential oil content, biological yield and essential elements content of the Chamomile. In the interaction of N × V, the highest and lowest dry flower yields were observed in N3V3 (456 kg·ha–1) and N1V1 (316.9 kg·ha–1) treatments, respectively. The interaction showed that the highest and the lowest of essential oil content were observed in N3V3 (2.82 kg·ha–1) and N1V1 (1.56 kg·ha–1), respectively. The highest content of chamazulene compound were obtained in N2V3S3 treatments with 6.40% and the highest content of α-bisabolol oxide A related to N2V3 treatments with 53.50%. Based on the interaction results of N × V × S, the highest biological yield was observed in N3V2S3 with 2012 kg·ha–1. The reason for the results can be due to the high moisture storage capacity of the superabsorbent and vermicompost, which can increase the availability of water consumption. In general, it seems that with increasing nitrogen and vermicompost ratios of soil, not only the nutritional availability of the plant (especially nitrogen, phosphorus and potassium) increased, but also the physical structure and vital processes of the soil by creating a suitable substrate for root growth- increased the production of chamomile flower yields.

Bibliografia

  1. Adesemoye, A.O., Torbert, H.A., Kloepper, J.W. (2009). Plant growth-promoting rhizobacteria allow reduced application rates of chemical fertilizers. Microb. Ecol., 58(4), 921–929, https://doi.org/10.1007/s00248-009-9531-y
  2. Alinian, S., Razmjoo, J., Zeinali, H. (2016). Flavonoids, anthocyanins, phenolics and essential oil produced in cumin (Cuminum cyminum L.) accessions under different irrigation regimes. Ind. Crop. Prod., 81, 49–55. https://doi.org/10.1016/j.indcrop.2015.11.040
  3. Amiri, R., Nikbakht, A., Rahimmalek, M., Hosseini, H. (2017). Variation in the essential oil composition, antioxidant capacity, and physiological characteristics of Pelargonium graveolens L. inoculated with two species of mycorrhizal fungi under water deficit conditions. J. Plant Growth. Regul., 36, 502–515, https://doi.org/10.1007/s00344-016-9659-1
  4. Bakkali, F., Averbeck, S., Averbeck, D., Idaomar, M. (2008). Biological effects of essential oils–a review. Food Chem. Toxicol., 46(2), 446–475, https://doi.org/10.1016/j.fct.2007.09.106
  5. Bichsel, R.G., Starman, T.W., Wang, Y.T. (2008). Nitrogen, phosphorus, and potassium requirements for optimizing growth and flowering of the nobile dendrobium as a potted orchid. HortScience, 43(2), 328–332, https://doi.org/10.21273/HORTSCI.43.2.328
  6. Chapman, H.D., Pratt, P.F., (1962). Methods of analysis for soils, plants and waters. Soil Sci., 93(1), 68, https://doi.org/10.12691/wjar-4-2-4
  7. Chen, J., Liu, L., Wang, Z., Sun, H., Zhang, Y., Bai, Z., Song, S., Lu, Z., Li, C. (2019). Nitrogen fertilization effects on physiology of the cotton Boll–Leaf system. Agronomy, 9(6), 271, https://doi.org/10.3390/agronomy9060271
  8. Chrysargyris, A., Panayiotou, C., Tzortzakis, N. (2016). Nitrogen and phosphorus levels affected plant growth, essential oil composition and antioxidant status of lavender plant (Lavandula angustifolia Mill.). Ind. Crop Prod., 83, 577–586, https://doi.org/10.1016/j.indcrop.2015.12.067
  9. Duc, G., Agrama, H., Bao, S., Berger, J., Bourion, V., De Ron, AM., Tullu, A. (2015). Breeding annual grain legumes for sustainable agriculture: new methods to approach complex traits and target new cultivar ideotypes. Crit. Rev. Plant Sci., 34(1–3), 381–411, https://doi.org/10.1080/07352689.2014.898469
  10. El Gendy, A.G., El Gohary, A.E., Omer, E.A, Hendawy, S.F., Hussein, M.S., Petrova, V., Stancheva, I. (2017). Effect of nitrogen and potassium fertilizer on herbage and oil yield of chervil plant (Anthriscus cerefolium L.). Ind. Crop Prod., 69, 167–174, https://doi.org/10.1016/j.indcrop.2015.02.023
  11. Emongor, V.E., Chweya, J.A., Keya, S.O., Munavu, R.M. (1990). Effect of nitrogen and phosphorus on the essential oil yield and quality of chamomile (Matricaria chamomilla L.) flowers. E Afr. Agric. For. J., 55(4), 261–264, https://doi.org/10.1080/00128325.1990.11663593
  12. Eroglu, N., Emekci, M., Athanassiou, C.G. (2017). Applications of natural zeolites on agriculture and food production. J. Sci. Food Agric., 97(11), 3487–3499, https://doi.org/10.1002/jsfa.8312
  13. Formisano, C., Delfine, S., Oliviero, F., Tenore, G.C., Rigano, D., Senatore, F. (2015). Correlation among environmental factors, chemical composition and antioxidative properties of essential oil and extracts of chamomile (Matricaria chamomilla L.) collected in Molise (South-central Italy). Ind. Crop Prod., 63, 256–263, https://doi.org/10.1016/j.indcrop.2014.09.042.
  14. Ghanavatifard, F., Mohtadi, A., Masoumiasl, A. (2018). Investigation of tolerance to different nickel concentrations in two species Matricaria chamomilla and Matricaria aurea. Int. J. Environ. Sci. Technol, 15, 949–956, https://doi.org/10.1007/s13762-017-1435-7.
  15. Ghavimi, H., Shayanfar, A., Hamedeyazdan, S., Shiva, A., Garjani A. (2012). Chamomile: An ancient pain remedy and a modern gout relief-A hypothesis. Afr. J. Pharm. Pharmacol., 6, 508–511, https://doi.org/10.5897/AJPP10.197.
  16. Glaser, B., Wiedner, K., Seelig, S., Schmidt, H.P., Gerber, H. (2015). Biochar organic fertilizers from natural resources as substitute for mineral fertilizers. Agron. Sust. Dev., 35, 667–678, https://doi.org/10.1007/s13593-014-0251-4.
  17. Giannoulis, K.D., Kamvoukou, C.A., Gougoulias, N., Wogiatzi, E. (2020). Matricaria chamomilla L. (German chamomile) flower yield and essential oil affected by irrigation and nitrogen fertilization. Emir. J. Food Agric., 32(5), 328–335, https://doi.org/10.9755/ejfa.2020.v32.i5.2099.
  18. Gholami, H., Saharkhiz, M.J., Fard, F.R., Ghani, A., Nadaf, F. (2018). Humic acid and vermicompost increased bioactive components, antioxidant activity and herb yield of Chicory (Cichorium intybus L.). Biocatal. Agric. Biotechnol., 14, 286–292, https://doi.org/10.1016/j.bcab.2018.03.021.
  19. Gopalakrishnan, L., Doriya, K., Kumar, D.S. (2016). Moringa oleifera: A review on nutritive importance and its medicinal application. Food Sci. Hum. Well., 5(2), 49–56, https://doi.org/10.1016/j.fshw.2016.04.001.
  20. Govahi, M., Ghalavand, A., Nadjafi, F., Sorooshzadeh, A. (2015). Comparing different soil fertility systems in Sage (Salvia officinalis) under water deficiency. Ind. Crop Prod., 74, 20–27, https://doi.org/10.1016/j.indcrop.2015.04.053.
  21. Hadi, M., Darz, M.T., Gh, Z., Riazi, G. (2011). Effects of vermicompost and amino acids on the flower yield and essential oil production from Matricaria chamomile L. J. Med. Plants Res., 5(23), 5611–5617.
  22. Hazrati, S., Tahmasebi-Sarvestani, Z., Mokhtassi-Bidgoli, A., Modarres-Sanavy, S.A.M., Mohammadi, H., Nicola, S. (2017). Effects of zeolite and water stress on growth, yield and chemical compositions of Aloe vera L. Agric. Water Manage., 181, 66–72, https://doi.org/10.1016/j.agwat.2016.11.026
  23. Hajiboland, R., Aliasgharzadeh, N., Laiegh, S., Poschenrieder, C. (2010). Colonization with arbuscular mycorrhizal fungi improves salinity tolerance of tomato (Solanum lycopersicum L.) plants. Plant Soil, 331, 313–327, https://doi.org/10.1007/s11104-009-0255-z
  24. Hoover, S.E., Ladley, J.J., Shchepetkina, A.A., Tisch, M., Gieseg, S.P., Tylianakis, J.M. (2012). Warming, CO2, and nitrogen deposition interactively affect a plant‐pollinator mutualism. Ecol. Lett., 15(3), 227–234, https://doi.org/10.1111/j.1461-0248.2011.01729.x
  25. Hornok, L. (1992). Angelica. In: Cultivation and Processing of Medicinal Plants. JohnWiley & Sons, Chichester, UK, 1992, pp. 147–150.
  26. Jannoura, R., Joergensen, R.G., Bruns, C. (2014). Organic fertilizer effects on growth, crop yield, and soil microbial biomass indices in sole and intercropped peas and oats under organic farming conditions. Eur. J. Agron., 52, 259–270, https://doi.org/10.1016/j.eja.2013.09.001
  27. Joshi, R., Singh, J., Vig, A.P. (2015). Vermicompost as an effective organic fertilizer and biocontrol agent: effect on growth, yield and quality of plants. Rev. Environ. Sci. Biotechnol., 14(1), 137–159, https://doi.org/10.1007/s11157-014-9347-1
  28. Kammann, C.I., Schmidt, H.P., Messerschmidt, N., Linsel, S., Steffens, D., Müller, C., Joseph, S. (2015). Plant growth improvement mediated by nitrate capture in co-composted biochar. Sci. Rep, 5, 11080, http://dx.doi.org/10.1038/srep11080
  29. Kariminejad, M., Pazoki, A. (2015). Effect of biological and chemical nitrogen fertilizers on yield, yield components and essential oil content of German Chamomile (Matricaria chamomilla L.) in Shahr-e-Ray region. Biol. Forum, 7(1), 1698.
  30. Kisić, I., Kovač, M., Ivanec, J., Bogunović, I., Tkalčec, G., Hannel, L. (2019). Effects of organic fertilization on soil properties and chamomile flower yield. Org. Agric., 9(3), 345–355, https://doi.org/10.1007/s13165-018-0231-0
  31. Kleinwächter, M., Selmar, D. (2014). Influencing the product quality by applying drought stress during the cultivation of medicinal plants. In: Physiological mechanisms and adaptation strategies in plants under changing environment, Ahmad P., Wani M. (eds). Springer, New York, NY, pp. 57–73, https://doi.org/10.1007/978-1-4614-8591-9_3
  32. Lehmann, J., Kleber, M. (2015). The contentious nature of soil organic matter. Nature, 528(7580), 60, https://doi.org/10.1038/nature16069
  33. Lim, S.L., Wu, T.Y., Lim, P.N., Shak, K.P.Y. (2015). The use of vermicompost in organic farming: overview, effects on soil and economics. J. Sci. Food Agric., 95(6), 1143–1156, https://doi.org/10.1002/jsfa.6849
  34. Mohammad, R., Hamid, S., An, A. (2010). Effects of planting date and seedling age on agro-morphological characteristics, essential oil content and composition of German chamomile (Matricaria chamomilla L.) grown in Belgium. Ind. Crop Prod., 31, 145–152, https://doi.org/10.1016/j.indcrop.2009.09.019
  35. Moore, B.D., Andrew, R.L., Külheim, C., Foley, W.J. (2014). Explaining intraspecific diversity in plant secondary metabolites in an ecological context. New Phytol., 201(3), 733–750, https://doi.org /10.1111/nph.12526. Epub.
  36. Naguib, N.Y.M. (2011). Organic vs chemical fertilization of medicinal plants: a concise review of researches. Adv. Environ. Biol, 5(2), 394–400.
  37. Nigussie, A., Kuyper, T.W., Bruun, S., de Neergaard, A. (2016). Vermicomposting as a technology for reducing nitrogen losses and greenhouse gas emissions from small-scale composting. J. Clean. Prod, 139, 429–439, https://doi.org/10.1016/j.jclepro.2016.08.058
  38. Niinemets, U., Hauff, K., Bertin, N., Tenhunen, J.D., Steinbrecher, R., Seufert, G. (2002). Monoterpene emissions in relation to foliar photosynthetic and structural variables in Mediterraneanevergreen Quercus species. New Phytol., 153, 243–256, https://doi.org/10.1046/j.0028-646X.2001.00323.x
  39. Novozamsky, I., Eck, RV., Schouwenburg, J.C., Walinga, I. (1974). Total nitrogen determination in plant material by means of the indophenol blue method. Neth. J. Agric. Sci., 22, 3–5.
  40. Ozbahce, A., Tari, A.F., Gönülal, E., Simsekli, N., Padem, H. (2015). The effect of zeolite applications on yield components and nutrient uptake of common bean under water stress. Arch. Agron. Soil Sci., 61(5), 615–626, https://doi.org/10.1080/03650340.2014.946021
  41. Park, E.H., Bae, W.Y., Eom, S.J., Kim, K.T., Paik, H.D. (2017). Improved antioxidative and cytotoxic activities of chamomile (Matricaria chamomilla) florets fermented by Lactobacillus plantarum KCCM 11613P. J. Zhejiang Univ. Sci. B, 18(2), 152–160, https://doi.org/110.1631/jzus.B1600063
  42. Paul, E.A. (2016). The nature and dynamics of soil organic matter: plant inputs, microbial transformations, and organic matter stabilization. Soil Biol Biochem., 98, 109–126, https://doi.org/10.1016/j.soilbio.2016.04.001
  43. Qin, H., Lu, K., Strong, P.J., Xu, Q., Wu, Q., Xu, Z. (2015). Long-term fertilizer application effects on the soil, root arbuscular mycorrhizal fungi and community composition in rotation agriculture. Appl. Soil Ecol., 89, 35–43, https://doi.org/10.1016/j.apsoil.2015.01.008
  44. Tamagno, S., Sadras, V.O., Haegele, J.W., Armstrong, P.R., Ciampitti, I.A. (2018). Interplay between nitrogen fertilizer and biological nitrogen fixation in soybean: implications on seed yield and biomass allocation. Sci. Rep., 30, 8(1), 17502, https://doi.org/10.1038/s41598-018-35672-1
  45. Rahmati, M., Azizi, M., Khayyat, M.H., Nemati, H., Asili, J. (2011). Yield and oil constituents of chamomile (Matricaria chamomilla L.) flowers depending on nitrogen application, plant density and climate conditions. J. Essent. Oil Bear. Plants, 14(6), 731–741, https://doi.org/10.1080/0972060x.2011.10643996
  46. Rubiolo, P., Liberto, E., Sgorbini, B., Russo, R., Veuthey, J.L., Bicchi, C. (2008). FastGC–conventional quadrupole mass spectrometry in essential oil analysis. J. Sep. Sci., 31, 1074–1084, https://doi.org/10.1002/jssc.200700577
  47. Ranjbar, F., Pessarakli, M., Rezvani Moghaddam, P., Koocheki, A. (2017). Responses of anise medicinal plant species in terms of essential oil contents and concentrations to different planting times and various nitrogen fertilizer sources under semi-arid climatic conditions. Commun. Soil Sci. Plant Anal., 48(7), 801–807, https://doi.org/10.1080/00103624.2017.1298791
  48. Salehi, A., Tasdighi, H., Gholamhoseini, M. (2016). Evaluation of proline, chlorophyll, soluble sugar content and uptake of nutrients in the German chamomile (Matricaria chamomilla L.) under drought stress and organic fertilizer treatments. Asian Pac. J. Trop. Biomed., 6(10), pp. 886–891.
  49. Salehi, A., Gholamhoseini, M., Ataei, R., Sefikon, F., Ghalavand, A. (2018). Effects of zeolite, bio-and organic fertilizers application on german chamomile yield and essential oil composition. J. Essent. Oil Bear. Plants, 21(1), 116–130, https://doi.org/10.1080/0972060X.2018.1436985
  50. Salehi, A., Hazrati, S. (2017). How essential oil content and composition fluctuate in German chamomile flowers during the day? J. Essent. Oil Bear. Plants, 20(3), pp. 622–631, https://doi.org/10.1080/0972060X.2017.1351895
  51. Sangwan, N.S., Farooqi, A.H.A., Shabih, F., Sangwan, R.S. (2001). Regulation of essential oil production in plants. Plant Growth Regul., 34(1), 3–21, https://doi.org/10.1023/A:1013386921596
  52. Sharma, A., Sharma, R.P., Katoch, V., Sharma, G.D. (2017). Influence of vermicompost and split applied nitrogen on growth, yield, nutrient uptake and soil fertility in pole type french bean (Phaseolus vulgaris L.) in an Acid Alfisol. Legume Res. – Int. J., https://doi.org/10.18805/lr.v0iof.9107
  53. Stefanaki, A., Cook, C.M., Lanaras, T., Kokkini, S. (2016). The oregano plants of Chios Island (Greece): Essential oils of Origanum onites L. growing wild in different habitats. Ind. Crop Prod., 82, 107–113.
  54. Teotia, P., Kumar, V., Kumar, M., Shrivastava, N.,Varma, A. (2016). Rhizosphere microbes: Potassium solubilization and crop productivity – present and future aspects. In: Potassium solubilizing microorganisms for sustainable agriculture, Meena, V., Maurya, B., Verma, J., Meena, R. (eds). Springer, New Delhi, pp. 315–325, https://doi.org/10.1007/978-81-322-2776-2_22
  55. Wu, Q., Xia, G., Chen, T., Wang, X., Chi, D., Sun, D. (2016). Nitrogen use and rice yield formation response to zeolite and nitrogen coupling effects: Enhancement in nitrogen use efficiency. J. Soil Sci. Plant Nutr., 16(4), 999–1009, http://dx.doi.org/10.4067/S0718-95162016005000073
  56. Zheng, J., Chen, T., Xia, G., Chen, W., Liu, G., Chi, D. (2018). Effects of zeolite application on grain yield, water use and nitrogen uptake of rice under alternate wetting and drying irrigation. Int. J, Agric. Biol., Engeneer., 11(1), 157–164, https://doi.org/10.25165/j.ijabe.20181101.3064
  57. Ravindran, B., Wong, J.W., Selvam, A., Sekaran, G. (2016). Influence of microbial diversity and plant growth hormones in compost and vermicompost from fermented tannery waste. Biores. Technol, 217, 200–204. https://doi.org/10.1016/j.biortech.2016.03.032

Downloads

Download data is not yet available.

Podobne artykuły

<< < 1 2 3 4 5 6 7 8 9 10 > >> 

Możesz również Rozpocznij zaawansowane wyszukiwanie podobieństw dla tego artykułu.