Przejdź do głównego menu Przejdź do sekcji głównej Przejdź do stopki

Tom 20 Nr 2 (2021)

Artykuły

QUANTITY AND QUALITY YIELD OF ESSENTIAL OIL FROM Mentha × piperita L. UNDER FOLIAR-APPLIED CHITOSAN AND INOCULA-TION OF ARBUSCULAR MYCORRHIZAL FUNGI

DOI: https://doi.org/10.24326/asphc.2021.2.5
Przesłane: 23 czerwca 2019
Opublikowane: 2021-04-27

Abstrakt

Peppermint (Mentha × piperita L.) is cultivated for its benefits in pharmaceutical, medicinal, and cosmetic industries. The well-known essential oil of Mentha × piperita L. is widely produced and used all over the world. The aim of present study was to evaluate the impacts of different concentrations of chitosan on the quality and quantity of the essential oil from the aerial parts of peppermint under inoculation of the rhizomes of peppermint seedlings with arbuscular mycorrhizal fungi. Experimental treatments were arranged as factorial design in a completed random block design. The highest essential oil yield (2.4 mL 100 g–1 dry matter) was obtained from the peppermint plants under foliar sprayed at 5 g L–1 chitosan along the inoculum with arbuscular mycorrhizal fungi. For evaluation of phytochemical characteristics, the contents of the main constituents of the peppermint essential oils such as menthol, menthone, etc. (oxygenated monoterpenes and monoterpenes hydrocarbons) under different treatments were analyzed by GC-FID and GC/MS. Results indicated that using chitosan foliar meaningfully raised the amount of menthol, as the major constituent and quality index (>60% v/w), in the essential oil from the peppermint plants inoculation with arbuscular mycorrhizal, however, the plants under the foliar spray of chitosan (without inoculum) revealed the highest amounts of menthone and limonene. In conclusion, we found that the foliar-applied chitosan along inoculation with arbuscular mycorrhizal fungi can be improved quantity and quality active substances of Mentha × piperita L. such as the contents of essential oil, menthol, and balance menthol/menthone.

Bibliografia

  1. Adams, R.P. (2007). Identification of essential oil components by gas chromatography/quadrupole mass spectroscopy. Allured, Carol Stream, IL, USA.
  2. Ahmad, B., Jaleel, H., Shabbir, A., Khan, M.M.A., Sadiq, Y. (2019). Concomitant application of depolymerized chitosan and GA3 modulates photosynthesis, essential oil and menthol production in peppermint (Mentha piperita L.). Sci. Hortic., 246, 371–379.
  3. Ahmad, B., Khan, M., Jaleel, H., Sadiq, Y., Shabbir, A.M.U. (2017). Exogenously sourced γ-irradiated chitosan-mediated regulation of growth, physiology, quality attributes and yield in Mentha piperita L. Turk. J. Biol., 41(2), 388–401.
  4. Aider, M. (2010). Chitosan application for active bio-based films production and potential in the food industry. LWT-Food Sci. Technol., 43(6), 837–842.
  5. Andoğan, B.C., Baydar, H., Kaya, S., Demirci, M., Özbaşar, D., Mumcu, E. (2002). Antimicrobial activity and chemical composition of some essential oils. Arch. Pharmacal Res., 25(6), 860–864.
  6. Arango, M., Ruscitti, M., Ronco, M., Beltrano, J. (2012). Mycorrhizal fungi inoculation and phosphorus fertilizer on growth, essential oil production and nutrient uptake in peppermint (Mentha piperita L.). Rev. Bras. Plantas Med.. 14(4), 692–699.
  7. Aşcı, Ö.A., Deveci, H., Erdeğer, A., Özdemir, K.N., Demirci, T., Baydar, N.G. (2018). The effects of brassinosteroid applications on growth and secondary metabolite production in Lavandula angustifolia ‘Munstead’. Turk. J. Agric. Food Sci. Technol., 6(10), 1448–1454.
  8. Augé, R.M. (2001). Water relations, drought and vesicular-arbuscular mycorrhizal symbiosis. Mycorrhiza, 11(1), 3–42.
  9. Aziz, Z.A., Ahmad, A., Setapar, S.H.M., Karakucuk, A., Azim, M.M., Lokhat, D., Rafatullah, M., Ganash, M., Kamal, M. A., Ashraf, G.M. (2018). Essential oils: extraction techniques, pharmaceutical and therapeutic potential.
  10. A Review. Curr. Drug. Metab., 19(13), 1100–1110.
  11. Bajalan, I., Ghasemi Pirbalouti, A. (2014). Variation in antibacterial activity and chemical compositions of essential oil from different populations of myrtle. Ind. Crops Prod., 61, 303–307.
  12. Bistgani, Z.E., Siadat, S.A., Bakhshandeh, A., Ghasemi Pirbalouti, A., Hashemi, M. (2017). Morpho-physiological and phytochemical traits of (Thymus daenensis Celak.) in response to deficit irrigation and chitosan application. Acta Physiol. Plant., 39(10), 231.
  13. Bupesh, G., Amutha, C., Nandagopal, S., Ganeshkumar, A., Sureshkumar, P., Murali, K. (2007). Antibacterial activity of Mentha piperita L. (peppermint) from leaf extracts-a medicinal plant. Acta Agric Slov., 89(1), 73.
  14. Chakraborty, M., Karun, A., Mitra, A. (2009). Accumulation of phenylpropanoid derivatives in chitosan-induced cell suspension culture of Cocos nucifera. J. Plant Physiol., 166, 63–71.
  15. Chen, M.-C., Mi, F.-L., Liao, Z.-X., Hsiao, C.-W., Sonaje, K., Chung, M.-F., Hsu, L.-W., Sung, H.-W. (2013). Recent advances in chitosan-based nanoparticles for oral delivery of macromolecules. Adv. Drug Deliv. Rev., 65(6), 865–879.
  16. Copetta, A., Lingua, G., Berta, G. (2006). Effects of three AM fungi on growth, distribution of glandular hairs, and essential oil production in Ocimum basilicum L. var. Genovese. Mycorrhiza, 16(7), 485–494.
  17. Daei, G., Ardekani, M., Rejali, F., Teimuri, S., Miransari, M. (2009). Alleviation of salinity stress on wheat yield, yield components, and nutrient uptake using arbuscular mycorrhizal fungi under field conditions. J. Plant Physiol., 166(6), 617–625.
  18. Dash, M., Chiellini, F., Ottenbrite, R.M., Chiellini, E. (2011). Chitosan – A versatile semi-synthetic polymer in biomedical applications. Prog. Polym. Sci., 36(8), 981–1014.
  19. Desam, N.R., Al-Rajab, A.J., Sharma, M., Mylabathula, M.M., Gowkanapalli, R.R., Albratty, M. (2017). Chemical constituents, in vitro antibacterial and antifungal activity of Mentha× piperita L.(peppermint) essential oils. J. King Saud University-Science, DOI: http://dx.doi.org/10.1016/jjksus.2017.07.013
  20. Dragland, S., Senoo, H., Wake, K., Holte, K., Blomhoff, R. (2003). Several culinary and medicinal herbs are important sources of dietary antioxidants. J. Nutr., 133(5), 1286–1290.
  21. El-Din, K.M.G., El-Wahed, M.A. (2005). Effect of some amino acids on growth and essential oil content of chamomile plant. Int. J. Agric. Biol., 7, 376–380.
  22. El-Sawy, N.M., El-Rehim, H.A.A., Elbarbary, A.M., Hegazy, E.-S.A. (2010). Radiation-induced degradation of chitosan for possible use as a growth promoter in agricultural purposes. Carbohydr. Polym., 79(3), 555–562.
  23. EmamiBistgani, Z., Siadat, S.A., Bakhshandeh, A., Ghasemi Pirbalouti, A., Hashemi, M. (2017). Interactive effects of drought stress and chitosan application on physiological characteristics and essential oil yield of Thymus daenensis Celak. Crop J., 5, 407–415.
  24. Fejéra, J., Gruľováa, D., De Feob, V., Ürgeovác, E., Obertd, B., Preťovác, A. (2018). Mentha × piperita L. nodal segments cultures and their essential oil production. Ind. Crops Prod., 112, 550–555.
  25. Ghasemi Pirbalouti, A., Malekpoor, F., Salimi, A., Golparvar, A. (2017). Exogenous application of chitosan on biochemical and physiological characteristics, phenolic content and antioxidant activity of two species of basil (Ocimum ciliatum and Ocimum basilicum) under reduced irrigation. Sci. Hortic., 217, 114–122.
  26. Gupta, M., Prasad, A., Ram, M., Kumar, S. (2002). Effect of the vesicular–arbuscular mycorrhizal (VAM) fungus Glomus fasciculatum on the essential oil yield related characters and nutrient acquisition in the crops of different cultivars of menthol mint (Mentha arvensis) under field conditions. Biores. Technol., 81(1), 77–79.
  27. Hafner, A., Lovrić, J., Pepić, I., Filipović-Grčić, J. (2011). Lecithin/chitosan nanoparticles for transdermal delivery of melatonin. J. Microencapsul., 28(8), 807–815.
  28. İşcan, G., Ki̇ri̇mer, N., Kürkcüoǧlu, M.N., Başer, H.C., Demirci, F. (2002). Antimicrobial screening of Mentha piperita essential oils. J. Agric. Food Chem., 50(14), 3943–3946.
  29. Karagiannidis, N., Thomidis, T., Lazari, D., Panou-Filotheou, E., Karagiannidou, C. (2011). Effect of three Greek arbuscular mycorrhizal fungi in improving the growth, nutrient concentration, and production of essential oils of oregano and mint plants. Sci. Hortic. 129(2), 329–334.
  30. Khaosaad, T., Vierheilig, H., Nell, M., Zitterl-Eglseer, K., Novak, J. (2006). Arbuscular mycorrhiza alter the concentration of essential oils in oregano (Origanum sp., Lamiaceae). Mycorrhiza, 16(6), 443–446.
  31. Kim, H.-J., Chen, F., Wang, X., Rajapakse, N.C. (2005). Effect of chitosan on the biological properties of sweet basil (Ocimum basilicum L.). J. Agric. Food Chem., 53(9), 3696–3701.
  32. Kizil, S., Hasimi, N., Tolan, V., Kilinc, E., Yuksel, U. (2010). Mineral content, essential oil components and biological activity of two mentha species (M. piperita L., M. spicata L.). Turk. J. Field Crops., 15(2), 148–153.
  33. Kong, F., Yamaoka, Y., Ohama, T., Lee, Y., Li-Beisson, Y. (2019). Molecular genetic tools and emerging synthetic biology strategies to increase cellular oil content in chlamydomonas reinhardtii. Plant Cell Physiol., 60(6), 1184–1196. DOI: 10.1093/pcp/pcz022
  34. Lazutka, J., Mierauskien, J., Slapšyt, G., Dedonyt, V. (2001). Genotoxicity of dill (Anethum graveolens L.), peppermint (Mentha× piperita L.) and pine (Pinus sylvestris L.) essential oils in human lymphocytes and Drosophila melanogaster. Food Chem Toxicol., 39(5), 485–492.
  35. Lei, C., Ma, D., Pu, G., Qiu, X., Du, Z., Wang, H., Li, G., Ye, H., Liu, B. (2011). Foliar application of chitosan activates artemisinin biosynthesis in Artemisia annua L. Ind. Crops Prod., 33(1), 176–182.
  36. Li, Y., Zhao, X., Xia, X., Luan, Y., Du, Y., Li, F. (2008). Effects of oligochitosan on photosynthetic parameter of brassicanapus seedlings under drought stress. Acta Agronom. Sin., 34(2), 326.
  37. Ligor, M., Buszewski, B. (1999). Determination of menthol and menthone in food and pharmaceutical products by solid-phase microextraction–gas chromatography. J. Chromatogr. A., 847, 161–169.
  38. Malekpoor, F., Ghasemi Pirbalouti, A., Salimi, A. (2016). Effect of foliar application of chitosan on morphological and physiological characteristics of basil under reduced irrigation. Res. Crops., 17(2), 354–359.
  39. Minami, M., Kita, M., Nakaya, T., Yamamoto, T., Kuriyama, H., Imanishi, J. (2003). The inhibitory effect of essential oils on herpes simplex virus type–1 replication in vitro. Microbiol. Immunol., 47(9), 681–684.
  40. Miransari, M. (2014). Mycorrhizal fungi to alleviate compaction stress on plant growth. In: Use of microbes for the alleviation of soil stresses, Vol. 2. Miransari, M. (ed.). Springer, New York, p. 165–174.
  41. Pandey, P., Verma, M.K., De, N. (2018). Chitosan in agricultural context. A review. Bull. Env. Pharmacol. Life Sci., 7, 87–96.
  42. Rapparini, F., Peñuelas, J. (2014). Mycorrhizal fungi to alleviate drought stress on plant growth. In: Use of microbes for the alleviation of soil stresses, vol. 1. Miransari, M. (ed.). Springer, New York, p. 21–42.
  43. Reinhart, K.O., Lekberg, Y., Klironomos, J., Maherali, H. (2017). Does responsiveness to arbuscular mycorrhizal fungi depend on plant invasive status? Ecol. Evol., 7(16), 6482–6492.
  44. Samber, N., Khan, A., Varma, A., Manzoor, N. (2015). Synergistic anti-candidal activity and mode of action of Mentha piperita essential oil and its major components. Pharm. Biol., 53(10), 1496–1504.
  45. Sartoratto, A., Machado, A.L.M., Delarmelina, C., Figueira, G.M., Duarte, M.C.T., Rehder, V.L.G. (2004). Composition and antimicrobial activity of essential oils from aromatic plants used in Brazil. Braz. J. Microbiol., 35(4), 275–280.
  46. Satsu, H., Matsuda, T., Toshimitsu, T., Mori, A., Mae, T., Tsukagawa, M., Kitahara, M., Shimizu, M. (2004). Regulation of interleukin-8 secretion in human intestinal epithelial Caco-2 cells by α-humulene. Biofactors, 21(1–4), 137–139.
  47. Soković, M., Vukojević, J., Marin, P., Brkić, D., Vajs, V., Van Griensven, L. (2009). Chemical composition of essential oilsof thymus and mentha speciesand their antifungal activities. Molecules, 14(1), 238–249.
  48. Tarraf, W., Ruta, C., Tagarelli, A., De Cillis, F., De Mastro, G. (2017). Influence of arbuscular mycorrhizae on plant growth, essential oil production and phosphorus uptake of Salvia officinalis L. Ind. Crops Prod., 102, 144–153.
  49. Toghyani, M., Toghyani, M., Gheisari, A., Ghalamkari, G., Mohammadrezaei, M. (2010). Growth performance, serum biochemistry and blood hematology of broiler chicks fed different levels of black seed (Nigella sativa) and peppermint (Mentha piperita). Livest Sci., 129(1–3), 173–178.
  50. Urcoviche, R.C., Gazim, Z.C., Dragunski, D.C., Barcellos, F.G., Alberton, O. (2015). Plant growth and essential oil content of Mentha crispa inoculated with arbuscular mycorrhizal fungi under different levels of phosphorus. Ind. Crops Prod., 67, 103–107.
  51. Vo, L.T., Chan, D., King, R.G. (2003). Investigation of the effects of peppermint oil and valerian on rat liver and cultured human liver cells. Clin. Exp. Pharmacol. Physiol., 30(10), 799–804.
  52. Vosoughi, N., Gomarian, M., Ghasemi Pirbalouti, A., Khaghani, S., Malekpoor, F. (2018). Essential oil composition and total phenolic, flavonoid contents, and antioxidant activity of sage (Salvia officinalis L.) extract under chitosan application and irrigation frequencies. Ind. Crops Prod., 117, 366–374.
  53. Yin, H., Fretté, X.C., Christensen, L.P., Grevsen, K. (2011). Chitosan oligosaccharides promote the content of polyphenols in Greek oregano (Origanum vulgare ssp. hirtum). J. Agric. Food Chem., 60(1), 136–143.
  54. Zhao, J., Davis, L.C., Verpoorte, R. (2005). Elicitor signal transduction leading to production of plant secondary metabolites. Biotechnol. Adv., 23, 283–333.

Downloads

Download data is not yet available.

Podobne artykuły

<< < 74 75 76 77 78 79 80 81 82 83 > >> 

Możesz również Rozpocznij zaawansowane wyszukiwanie podobieństw dla tego artykułu.