Przejdź do głównego menu Przejdź do sekcji głównej Przejdź do stopki

Tom 18 Nr 4 (2019)

Artykuły

Gametophytic self-incompatibility in Rosaceae fruit trees

DOI: https://doi.org/10.24326/asphc.2019.4.14
Przesłane: 22 lipca 2019
Opublikowane: 2019-08-07

Abstrakt

Rosaceae fruit trees are characterized by gametophytic self-incompatibility, with their production typically requiring artificial pollination or pollination tree is required in production. Both of these solutions cause reductions in production efficiency, and self-incompatibility has become a major issue in agricultural biology, and as such, has been extensively studied. In this review, we discuss the relationship between S-RNase content in the style and self-incompatibility, and the role of the SLF gene in stamen-determining factor. Considering mutations in self-compatibility-related genes and self-compatibility in polyploid fruit trees, we discuss the potential mechanisms of self-incompatibility. Based on a preliminary study of the role of pollen tube Ca2+ gradients in self-incompatibility in Pyrus, we propose a new mechanistic model of self-incompatibility taking into account the effect of Ca2+. We also discuss the potential for hormone regulation to be used to control self-incompatibility in Rosaceae fruit trees.

Bibliografia

  1. Burgos, L., Egea, J., Guerriero, R., Viti, R., Monteleone, P., Audergon, J. (1997). The self-compatibility trait of the main apricot cultivars and new selections from breeding programmes. J. Hortic. Sci. Biotechnol., 72(1), 147–154. DOI: 10.1080/14620316.1997.11515501
  2. Franklin-Tong, N.V., Franklin, F.C.H. (2003). Gametophytic self-incompatibility inhibits pollen tube growth using different mechanisms. Trends Plant Sci., 8(12), 598–605. DOI: 10.1016/j.tplants.2003.10.008
  3. Franklin‐Tong, V.E., Hackett, G., Hepler, P.K. (1997). Ratio‐imaging of Ca2+i in the self‐incompatibility response in pollen tubes of Papaver rhoeas. Plant J., 12(6), 1375–1386. DOI: 10.1046/j.1365-313x.1997.12061375.x
  4. Gray, J.E., McClure, B.A., Bonig, I., Anderson, M.A., Clarke, A.E. (1991). Action of the style product of the self-incompatibility gene of Nicotiana alata (S-RNase) on in vitro-grown pollen tubes. Plant Cell, 3(3), 271–283. DOI: 10.2307/3869367
  5. Huang, S.-X., Wu, H.-Q., Li, Y.-R., Wu, J., Zhang, S.-J., Heng, W., Zhang, S.-L. (2008). Competitive interaction between two functional S-haplotypes confer self-compatibility on tetraploid Chinese cherry (Prunus pseudocerasus Lindl. cv. Nanjing Chuisi). Plant Cell Rep., 27(6), 1075–1085. DOI: 10.1007/s00299-008-0528-7
  6. Janssens, G., Goderis, I., Broekaert, W., Broothaerts, W. (1995). A molecular method for S-allele identification in apple based on allele-specific PCR. Theor. Appl. Genet., 91(4), 691–698. DOI: 10.1007/BF00223298
  7. Kao, T.-h., Tsukamoto, T. (2004). The molecular and genetic bases of S-RNase-based self-incompatibility. Plant Cell, 16(suppl. 1), S72–S83. DOI: 10.1105/tpc.016154
  8. Kirch, H., Uhrig, H., Lottspeich, F., Salamini, F., Thompson, R. (1989). Characterization of proteins associated with self-incompatibility in Solanum tuberosum. Theor. Appl. Genet., 78(4), 581–588. DOI: 10.1007/BF00290845
  9. Li, X., Li, M., Han, Z., Xu, X., Li, T. (2008). Self-compatible Pear Cultivar ‘Yanzhuang’ Resulting from S-RNase Mutation of ‘Ya Li’ (Pyrus bretschneideri Rehd.). Acta Hortic. Sinica (Chinese), 35(1), 13–18. DOI: 10.3724/SP.J.1005.2008.01083
  10. Liu, W., Fan, J., Li, J., Song, Y., Li, Q., Zhang, Y.e., Xue, Y. (2014). SCFSLF-mediated cytosolic degradation of S-RNase is required for cross-pollen compatibility in S-RNase-based self-incompatibility in Petunia hybrida. Front. Genet., 5(228). DOI: 10.3389/fgene.2014.00228
  11. Luu, D.-T., Qin, X., Morse, D., Cappadocia, M. (2000). S-RNase uptake by compatible pollen tubes in gametophytic self-incompatibility. Nature, 407(6804), 649–651. DOI: 10.1038/35036623
  12. McClure, B. (2006). New views of S-RNase-based self-incompatibility. Curr. Opin. Plant Biol., 9(6), 639–646. DOI: 10.1016/j.pbi.2006.09.004
  13. Meng, D., Gu, Z., Li, W., Wang, A., Yuan, H., Yang, Q., Li, T. (2014a). Apple MdABCF assists in the transportation of S‐RNase into pollen tubes. Plant J., 78(6), 990–1002. DOI: 10.1111/tpj.12524
  14. Meng, D., Gu, Z., Yuan, H., Wang, A., Li, W., Yang, Q., Zhu, Y., Li, T. (2014b). The microtubule cytoskeleton and pollen tube Golgi vesicle system are required for in vitro S-RNase internalization and gametic self-incompatibility in apple. Plant Cell Physiol., 55(5), 977–989. DOI: 10.1093/pcp/pcu031
  15. Okada, K., Tonaka, N., Moriya, Y., Norioka, N., Sawamura, Y., Matsumoto, T., Nakanishi, T., Takasaki-Yasuda, T. (2008). Deletion of a 236 kb region around S4-RNase in a stylar-part mutant S4sm-haplotype of Japanese pear. Plant Mol. Biol., 66(4), 389–400. DOI: 10.1007/s11103-007-9277-1
  16. Ortega, E., Sutherland, B.G., Dicenta, F., Boskovic, R., Tobutt, K.R. (2005). Determination of incompatibility genotypes in almond using first and second intron consensus primers: detection of new S alleles and correction of reported S genotypes. Plant Breed., 124(2), 188–196. DOI: 10.1111/j.1439-0523.2004.01058.x
  17. Qi, Y.-J., Wang, Y,-T., Han, Y.-X., Qiang, S., Wu, J., Tao, S.-T., Zhang, S.-L., Wu, H.-Q. (2011). Self-compatibility of ‘Zaoguan’ (Pyrus bretschneideri Rehd.) is associated with style-part mutations. Genetica, 139(9), 1149–1158. DOI: 10.1007/s10709-011-9617-6
  18. Qin, X., Liu, B., Soulard, J., Morse, D., Cappadocia, M. (2006). Style-by-style analysis of two sporadic self-compatible Solanum chacoense lines supports a primary role for S-RNases in determining pollen rejection thresholds. J. Exp. Bot., 57(9), 2001–2013. DOI: 10.1093/jxb/erj147
  19. Qu, H.-y., Zhang, Z., Wu, F., Wang, Y. (2016a). The role of Ca2+ and Ca2+ channels in the gametophytic self-incompatibility of Pyrus pyrifolia. Cell Calcium, 60(5), 299–308. DOI: 10.1016/j.ceca.2016.06.006
  20. Qu, H., Xing, W., Wu, F., Wang, Y. (2016b). Rapid and inexpensive method of loading fluorescent dye into pollen tubes and root hairs. PloS One, 11(4), e0152320. DOI: 10.1371/journal.pone.0152320
  21. Roldán, J.A., Rojas, H.J., Goldraij, A. (2012). Disorganization of F-actin cytoskeleton precedes vacuolar disruption in pollen tubes during the in vivo self-incompatibility response in Nicotiana alata. Ann. Bot., 110(4), 787–795. DOI: 10.1093/aob/mcs153
  22. Sassa, H., Hirano, H., Ikehashi, H. (1993). Identification and characterization of stylar glycoproteins associated with self-incompatibility genes of Japanese pear, Pyrus serotina Rehd. Mol. Gen. Genet. (MGG), 241(1–2), 17–25. DOI: 10.1007/bf00280196
  23. Silva, N., Goring, D. (2001). Mechanisms of self-incompatibility in flowering plants. Cell. Mol. Life Sci. (CMLS), 58(14), 1988–2007. DOI: 10.1007/PL00000832
  24. Sonneveld, T., Robbins, T., Bošković, R., Tobutt, K. (2001). Cloning of six cherry self-incompatibility alleles and development of allele-specific PCR detection. Theor. Appl. Genet., 102(6–7), 1046–1055. DOI: 10.1007/s001220000525
  25. Suassuna, T., Bruckner, C.H., Carvalho, R., de, Borém, A. (2003). Self-incompatibility in passionfruit: Evidence of gametophytic-sporophytic control. Theor. Appl. Genet., 106(2), 298–302. DOI: 10.1007/s00122-002-1103-1
  26. Sundberg, E., Østergaard, L. (2009). Distinct and dynamic auxin activities during reproductive development. Cold Spring Harbor Perspect. Biol., 1(6), a001628. DOI: 10.1101/cshperspect.a001628
  27. Tao, R., Watari, A., Hanada, T., Habu, T., Yaegaki, H., Yamaguchi, M., Yamane, H. (2007). Self-compatible peach (Prunus persica) has mutant versions of the S haplotypes found in self-incompatible Prunus species. Plant Mol. Biol., 63(1), 109–123. DOI: 10.1007/s11103-006-9076-0
  28. Ushijima, K., Yamane, H., Watari, A., Kakehi, E., Ikeda, K., Hauck, N.R., Iezzoni, A.F., Tao, R. (2004). The S haplotype‐specific F‐box protein gene, SFB, is defective in self‐compatible haplotypes of Prunus avium and P. mume. Plant J., 39(4), 573–586. DOI: 10.1111/j.1365-313X.2004.02154.x
  29. Wang, C.-L., Wu, J., Xu, G.-H., Gao, Y.-b., Chen, G., Wu, J.-Y., Wu, H.-q., Zhang, S.-L. (2010). S-RNase disrupts tip-localized reactive oxygen species and induces nuclear DNA degradation in incompatible pollen tubes of Pyrus pyrifolia. J. Cell Sci., 123(24), 4301–4309. DOI: 10.4161/psb.6.3.14386
  30. Wang, P., Shi, T., Gao, Z., Zhang, Z., Zhuang, W. (2012). Insertion mutation of pollen SFB gene in self-compatibility of Japanese apricot cultivars native to China. Acta Hortic. Sinica (Chinese), 39(3), 453–460.
  31. Wu, J., Li, M., Li, T. (2013a). Genetic features of the spontaneous self-compatible mutant, ‘Jin Zhui’ (Pyrus bretschneideri Rehd.). PloS One, 8(10), e76509. DOI: 10.1371/journal.pone.0076509
  32. Wu, J., Gu, C., Khan, M.A., Wu, J., Gao, Y., Wang, C., Korban, S.S., Zhang, S. (2013b). Molecular determinants and mechanisms of gametophytic self-incompatibility in fruit trees of Rosaceae. Critical Rev. Plant Sci., 32(1), 53–68. DOI: 10.1080/07352689.2012.715986
  33. Xue, X.M., Wang, J.Z., Zhang, A.N., Chao, L.U. (2008). Effects of plant growth regulating substances on pollen germination and tube growth in Chaohong peach. J. Northwest A & F Univ., 36(4), 123–129. DOI: 10.2967/jnmt.107.044081
  34. Yaegaki, H., Shimada, T., Moriguchi, T., Hayama, H., Haji, T., Yamaguchi, M. (2001). Molecular characterization of S-RNase genes and S-genotypes in the Japanese apricot (Prunus mume Sieb. et Zucc.). Sex. Plant Reprod., 13(5), 251–257. DOI: 10.1007/s004970100064
  35. Yang, G.-l., Qin N., Z.-q., Chen, J. (2010). Effects of Plant Growth Regulator on Pollen Germination and Pollen tube Growth of Whangkeumbae (Pyrus pyrifolia). Seed (Chinese), 7(29), 39–41. DOI: 10.3724/SP.J.1011.2010.01385
  36. Yang, L.I., Chang long, L.I., Wang, J., Yan, G.H., Zhang, X.M., Wei, L.I., Zhang, K.C., Tian zhong, L.I. (2015). Research of Relationship Between Sweet Cherry Lapins Self-compatibility and SFB4′ Gene. Acta Hortic. Sinica (Chinese), 42, 1251–1259.
  37. Zhang, S., Fang, J., and Yang, J. (2001). Study on the genetics of the fruit self-incompatibility and its physiological mechanism. J. Fruit Sci. (Chinese), 18(1), 49–52.
  38. Zhang, S., Yang, J., Li, X., Hiratsuka, S., Ngwela, J. (2002). Differences of S-glycoprotein Content in the Styles among Pear Cultivars Differing in Self-incompatible Strength. Acta Hortic. Sinica (Chinese), 29(2), 165–167. DOI: 10.1006/jfls.2001.0409.
  39. Zhang, S.J., Huang, S.X., Heng, W., Wu, H.Q., Wu, J., Zhang, S.L. (2015). Identification of S-genotypes in 17 Chinese cultivars of Japanese plum (Prunus salicina Lindl.) and molecular characterisation of 13 novel S-alleles. J. Hortic. Sci. Biotechnol., 83(5), 635–640. DOI: 10.1080/14620316.2008.11512435
  40. Zhang, S.L., Hiratsuka, S. (1999). Variations in S-protein levels in styles of Japanese pears and the expression of self-incompatibility. J. Jpn. Soc. Hortic. Sci., 68(5), 911–918. DOI: 10.2503/jjshs.68.911

Downloads

Download data is not yet available.

Podobne artykuły

<< < 21 22 23 24 25 26 27 28 29 30 > >> 

Możesz również Rozpocznij zaawansowane wyszukiwanie podobieństw dla tego artykułu.