Agronomy Science, przyrodniczy lublin, czasopisma up, czasopisma uniwersytet przyrodniczy lublin

Kształtowanie się powierzchni liści i produkcyjność lędźwianu siewnego (Lathyrus sativus L.) w zależności od dawki nawozów mineralnych i przedsiewnej inokulacji nasion

Viktor Kaminskyi

NSC Institute of Agriculture, National Academy of Agrarian Science of Ukraine

Dmytro Sokyrko

NSC Institute of Agriculture, National Academy of Agrarian Science of Ukraine

Volodymyr Hanhur

Poltava State Agrarian Academy

Liudmyla Yeremko

Poltava State Agrarian Academy


Abstrakt

The aim of the study was to analyze the effect of different amounts of mineral fertilization, bacterization of seeds on the leaf surface area formation and the chickling vetch (Lathyrus sativus) productivity. The study engaged six NPK fertilization amounts (0 – the check (control) without fertilizers, N15P15K15, N30P30K30, N15P30K30 + N15 (top dressing), N45P45K45 and N30P45K45 + N15 (top dressing) on two backgrounds of pre-sowing seed treatment (the control, water seed treatment, seed treatment with microbiological preparation Rizogumin, which contains a suspension of nodule bacteria Rhizobium leguminosarum 31 and physiologically active substances of biological origin). The leaf surface area was determined by the cutting method (in the phase of the first trifoliate leaf, budding, flowering, pod formation), which includes the selection of 15 plants, where the leaves are quickly cut off, weighed and their wet weight is determined. After that, cuts are made with a probe of a known diameter, 5 pcs. from every leaf. The mass of all cuts was determined. After determining the surface area of the leaves of each plant, the average plant area was calculated for each variant of the experiment. The average leaf surface area was multiplied by the number of plants per square meter, and the result was multiplied by 10000 to convert it to the average leaf surface area per hectare. The yield accounting was maintained by the method of continuous threshing from the registration plot by a selected combine harvester, with cleaning from impurities, weighing and determining the moisture content of the harvested grain. The maximum leaf surface area (60.8 thousand m2 ha-1) was in the phase of grain filling when N30P45K45 + N15 was added to top dressing and seed treatment with Rizogumin. In the absence of inoculation, the leaf area was 4.1 thousand m2 ha-1 less.

Słowa kluczowe:

yield, leaf area, lathyrus sativus, fertilizers, seed inoculation, number of seedpods, weight of 1000 seeds

Almeida N.F., Rubiales D., Vaz Patto M.C., 2015. Grass Pea. In: De Ron A. (ed.), Grain Legumes. Handbook of Plant Breeding, vol 10. Springer, New York, 251–265. https://doi.org/10.1007/978-1-4939-2797-5_8

Ali A., Alfarhan A., Aldjain I., Bokhari N., Al-Taisan W., Al-Rasheid K., Al-Quraishi S., 2008. Photosynthetic responses of pea plants (Pisum sativum L. cv. Little marvel) exposed to climate change in Riyadh city, KSA. Afr. J. Biotechnol. 7(15), 2630–2636.

Ashraf M.I., Pervez M.A., Amjad M., Ahmed R., Ayub M., 2011. Qualitative and quantitative response of pea (Pisum sativum L.) cultivars to judicious applications of irrigation with phosphorus and potassium. Pak. J. Life Soc. Sci. 9(2), 159–164.

Agha S.K., Oad F.C., Buriro U.A., 2004. Yield and yield components of inoculated and un-inoculated soybean under varying nitrogen levels. Asian J. Plant Sci. 3, 370–371. https://dx.doi.org/10.3923/ajps.2004.370.371

Campbell C.G., 1997. Grass pea. Lathyrus sativus L. Promoting the conservation and use of underutilized and neglected crops. 18. Institute of Plant Genetics and Crop Plant Research, Gatersleben/ International Plant Genetic Resources Institute, Rome, Italy, 91.

Grela E.R, Rybiński W., Matras J., Sobolewska S., 2012. Variability of phenotypic and morphological characteristics of some Lathyrus sativus L. and Lathyrus cicera L. accessions and nutritional traits of their seeds. Genet. Resour. Crop Evol. 59, 1687–1703. http://dx.doi.org/10.1007/s10722-011-9791-5

Hrytsayenko Z.M., Hrytsayenko A.O., Karpenko V.P., 2003. Methods of biological and agrochemical studies of plants and soils. Nichlawa, Kyiv.

Huda S.M.S., Sujauddin M., Shafinat S., Uddin M.S., 2007. Effects of phosphorus and potassium addition on growth and nodulation of Dalbergia sissoo in the nursery. J. For. Res. 18, 279–282. https://doi.org/10.1007/s11676-007-0056-2

Kouris-Blazos A., Belski R., 2016. Health benefits of legumes and pulses with a focus on Australian sweet lupins. Asia Pac. J. Clin. Nutr. 21(1), 1–17. https://doi.org/10.6133/apjcn.2016.25.1.23

Khandare A.L., Babu J.J., Ankulu M., Aparna N., Shirfule A., Rao G.S., 2014. Grass pea consumption & present scenario of neurolathyrism in Maharashtra state of India. Indian J. Med. Res. 140, 96–101.

Khokhoeva N.T., Tedеeva A.A., Tedeeva V.V., 2018. The role of biologics in enhancing the productivity of peavine grass. Int. J . Appl. Fund. Res. 8, 105–108 [in Russian]. https://doi.org/10.17513/mjpfi.12374

Kefely V.Y., 1994. Physiological basis of plants habitus modelling. Monograph. Russian Academy of Sciences. Institute of Soil Science and Photosynthesis. Nauka, Mosсow, 242–265 [in Russian].

Mlyneková Z., Chrenková M., Formelová Z., 2014. Cereals and legumes in nutrition of people with celiac disease. Int. J. Celiac Dis. 2(3), 105–109. https://doi.org/10.12691/ijcd-2-3-3

Mohammadjanloo Mohseni A., Gholipouri A., Tobeh A., Mostafeai H., 2009. Study of effects of different levels of nitrogen and potassium on yield and yield components of rain-fed lentil. Plant Ecophysiol. 2, 91–94.

Mesfin S., Gebresamue G., Haile M., Zenebe A., Desta G., 2020. Mineral fertilizer demand for optimum biological nitrogen fixation and yield potentials of legumes in Northern Ethiopia. Sustainability 12(16), 6449. https://doi.org/10.3390/su12166449

Mrkovački N., Marincović J., Aćimovic R., 2008. Effect of N Fertilizer Application on Growth and Yield of Inoculated Soybean. Not. Bot. Hort. Agrobot. Cluj 36(1), 48–51. https://doi.org/10.15835/nbha36190

Nandini Devi K., Rashmi Hajong, Athokpam H.S., Chongtham M., Dorendro Singh А., 2018. Response of Lathyrus (Lathyrus sativus L.) on Different Levels of Phosphorus and Row Spacing on Growth and Yield under Manipur Condition. Int. J. Curr. Microbiol. App. Sci. 7(5), 1950–1957. https://doi.org/10.20546/ijcmas.2018.705.229

Nichiporovich A.A., Stroganova L.E., Vlasova M.P., 1961. Photosynthetic activity of plants in crops. USSR Academy of Sciences, Moscow, pp. 137 [in Russian].

Nichiporovich A.A., 1982. Physiology of Photosynthesis and Plant Productivity. Physiology of Photosynthesis. Nauka, Moscow, 7–33 [in Russian].

Ronnera E., Frankea A.C., Vanlauwec B., Diandad M., Edehe E., Ukeme B., Balaf A., Heerwaardena J., Giller K.E. van, 2016. Understanding variability in soybean yield and response to P-fertilizer and rhizobium inoculants on farmers’ fields in northern Nigeria. Field Crops Res. 186, 133–145. https://doi.org/10.1016/j.fcr.2015.10.023

Roy R.N., Finck A., Blair G.J., Tandon H.L.S., 2006. Plant nutrition for food security. A guide for integrated nutrient management. Food and agriculture organization of the united nations. Rome, 366.

Silvestre S., Sousa Araújo S. de, Vaz Patto M.C., Marques da Silva J., 2014. Performance index: an expeditious tool to screen for improved drought resistance in the Lathyrus genus. J. Integr. Plant Biol. 56, 610–621. https://doi.org/10.1111/jipb.12186

Schulz S., Keatinge J.D.H., Wells G.J., 1999. Productivity and residual effects of legumes in ricebased cropping systems in a warm-temperate environment: I. Legume biomass production and N fixation. Field Crops Res. 61, 23–35. https://doi.org/10.1016/S0378-4290(98)00146-4

Saturno D.F., Cerezini P., Da Silva P.M., De Oliveira A.B., De Oliveira M.C.N., Hungria M., Nogueira M.A., Moreira P.D.S., 2017. Mineral nitrogen impairs the biological nitrogen fixation in soybean of determinate and indeterminate growth types. J. Plant Nutr. 3, 1690–1701. https://doi.org/10.1080/01904167.2017.1310890

Singh G., Ram H., Sekhon H.S., Agarwal N., Khanna V., 2011. Effect of nutrient management on nodulation, growth and yield of lentil (Lens culinaris L.) Genotypes AEJA 4(3), 46–49.

Skliar V.H., Zlobin Yu.A., 2015. Ecological physiology of plants. Sumy: Universytetska Knyha, 271.

Vaz Patto M.C., Fernández Aparicio M., Moral A., Rubiales D., 2006. Characterization of resistance to powdery mildew (Erysiphe pisi) in a germplasm collection of Lathyrus sativus. Plant Breed. 125, 308–310.

Wang Z-H., Li S-X., Malhi S.S., 2008. Effects of fertilization and other agronomic measures on nutritional quality of crops. J. Sci. Food Agric. 88, 7–23. https://doi.org/10.1002/jsfa.3084


Opublikowane
21-07-2021



Viktor Kaminskyi 
NSC Institute of Agriculture, National Academy of Agrarian Science of Ukraine
Dmytro Sokyrko 
NSC Institute of Agriculture, National Academy of Agrarian Science of Ukraine
Volodymyr Hanhur 
Poltava State Agrarian Academy
Liudmyla Yeremko 
Poltava State Agrarian Academy



Licencja

Artykuły są udostępniane na zasadach CC BY 4.0 (do 2020 r. na zasadach CC BY-NC-ND 4.0)..
Przysłanie artykułu do redakcji oznacza, że nie był on opublikowany wcześniej i nie jest rozpatrywany do publikacji gdzie indziej.

Autor podpisuje oświadczenie o oryginalności dzieła, wkładzie poszczególnych osób i źródle finansowania.

 

Czasopismo Agronomy Science przyjęło politykę samoarchiwizacji nazwaną przez bazę Sherpa Romeo drogą niebieską. Od 2021 r. autorzy mogą samoarchiwizować postprinty artykułów oraz wersje wydawnicze (zgodnie z licencją CC BY). Artykuły z lat wcześniejszych (udostępniane na licencji CC BY-NC-ND 4.0) mogą być samoarchiwizowane tylko w wersji wydawniczej.