Agronomy Science, przyrodniczy lublin, czasopisma up, czasopisma uniwersytet przyrodniczy lublin

Genetic similarity of four strawberry cultivars in respect to Verticillium wilt susceptibility under in vitro selection

Jadwiga Żebrowska

Department of Genetics and Horticultural Plant Breeding, Institute of Genetics, Breeding and Plant Biotechnology, Faculty of Agrobioengineering, University of Life Sciences in Lublin, Akademicka 15, 20-950 Lublin, Poland
https://orcid.org/0000-0001-8962-8117

Wojciech Marecki

Department of Genetics and Horticultural Plant Breeding, Institute of Genetics, Breeding and Plant Biotechnology, Faculty of Agrobioengineering, University of Life Sciences in Lublin, Akademicka 15, 20-950 Lublin, Poland
https://orcid.org/0000-0001-6564-2571


Abstrakt

Verticillium wilt caused by pathogenic soil fungus Vertcillium dahliae Kleb. is one of the most serious strawberry diseases not treated chemically. The strawberry is a species more or less susceptible to Verticillium sp., hence the need to select new genetically resistant cultivars. In this study, susceptibility of four strawberry cultivars to Verticillium wilt was examined under in vitro selection conditions as regards the genetic similarity of selected resistant plants. Microplants of 4 strawberry subclones obtained by in vitro cloning of each cultivar were inoculated in vitro with liquid mycelial homogenate of the pathogen. Development of disease symptoms was observed after 15, 30, 45, 60 and 75 days post inoculation. Results revealed differences of susceptibility to V. dahliae which depended on the subclone. The least susceptible to Verticillium wilt turned out to be ‘Plena’ subclone, followed by the ‘Elsanta’, ‘Feltar’ and ‘Teresa’ subclones. The highest genetic similarity of 59% was found between ‘Elsanta’ and ‘Teresa’ subclones, which after 75 days from inoculation were also characterized by a very similar percentage of resistant plants.

Słowa kluczowe:

tissue culture, Fragaria × ananassa, Verticillium dahliae, UPGMA, pathogenesis, ISSR markers

Amil-Ruiz F., Blanco-Portales R., Muñoz-Blanco J., Caballero J.L., 2011. The strawberry plant defense mechanism: A molecular review. Plant Cell Physiol. 52(11), 1873–1903. https://doi.org/10.1093/pcp/pcr136 DOI: https://doi.org/10.1093/pcp/pcr136

Amimoto K., 1992. Selection in strawberry with resistance to phytophthora root rot for hydroponics. Acta Hortic. 319, 273–278. https://doi.org/10.17660/ActaHortic.1992.319.41 DOI: https://doi.org/10.17660/ActaHortic.1992.319.41

Arnau G., Lallemand J., Bourgoin M., 2003. Fast and reliable strawberry variety identification using inter simple sequence repeat (ISSR) amplification. Euphytica 129, 69–79. https://doi.org/10.1023/A:1021509206584 DOI: https://doi.org/10.1023/A:1021509206584

Chandler C.K., Folta K., Dale A., Whitaker V.M., Herrington M., 2012. Strawberry. In: M.L. Badenes, D.H. Byrne (eds), Fruit breeding. Springer, US, 305–325. https://doi.org/10.1007/978-1-4419-0763-9 DOI: https://doi.org/10.1007/978-1-4419-0763-9_9

Chandra R., Kamle M., Bajpai A., Muthukumar M., Kalim S., 2010. In vitro selection: A candidate approach for disease resistance breeding in fruit crops. Asian J. Plant Sci. 9(8), 437–446. https://doi.org/10.3923/ajps.2010.437.446 DOI: https://doi.org/10.3923/ajps.2010.437.446

Damiano C., Monticelli S., Frattarelli A., Nicolini S., Corazza L., 1997. Somaclonal variability and in vitro regeneration of strawberry. Acta Hortic. 447, 87–93. https://doi.org/10.17660/ActaHortic.1997.447.8 DOI: https://doi.org/10.17660/ActaHortic.1997.447.8

Debnath S.C., Khanizadeh S., Jamieson A.R., Kempler C., 2008. Inter simple sequence repeat (ISSR) markers to assess genetic diversity and relatedness within strawberry genotypes. Can. J. Plant Sci. 88(2), 313–322. https://doi.org/10.4141/CJPS07088 DOI: https://doi.org/10.4141/CJPS07088

Debnath S.C., Ricard E., 2009. ISSR, anthocyanin content and antioxidant activity analyses to characterize strawberry genotypes. J. Appl. Hort. 11(2), 83–89. DOI: https://doi.org/10.37855/jah.2009.v11i02.17

Dziadczyk P., Bolibok H., Tyrka M., Hortyński J.A., 2003. In vitro selection of strawberry (Fragaria × ananassa Duch.) clones tolerant to salt stress. Euphytica 132(1), 49–55. https://doi.org/10.1023/A:1024647600516 DOI: https://doi.org/10.1023/A:1024647600516

Gawel N.J., Jarret R.L., 1991. A modified CTAB DNA extraction procedure for Musa and Ipomoea. Plant Mol. Biol. Rep. 9, 262–266. https://doi.org/10.1007/BF02672076 DOI: https://doi.org/10.1007/BF02672076

Hammerschlag F., Garcés S., Koch-Dean M., Ray S., Lewers K., Maas J., Smith B., 2006. In vitro response of strawberry cultivars and regenerants to Colletotrichum acutatum. Plant Cell, Tissue Organ Cult. 84, 255–261. https://doi.org/10.1007/s11240-005-9027-5 DOI: https://doi.org/10.1007/s11240-005-9027-5

Hussein T.S., Tawfik A.A., Khalifa M.A., 2008. Molecular identification and genetic relationships of six strawberry varieties using ISSR markers. Int J Agri Biol. 10, 677–680.

Jęcz T., Korbin M., 2010. Inoculation of micropropagated plants with wounded roots as a tool to precisely distinguish strawberry genotypes tolerant and susceptible to verticillium wilt disease. Phytopathologia 58, 33–42.

Kaleybar B.S., Nematzadeh G.A., Ghasemi Y., Hamidreza S., Petroudi H., 2018. Assessment of genetic diversity and fingerprinting of strawberry genotypes using inter simple sequence repeat marker. Horticult. Int. J. 2(5), 264‒269. https://doi.org/10.15406/hij.2018.02.00062 DOI: https://doi.org/10.15406/hij.2018.02.00062

Korbin M., 2007. Modern tools of fruit plant breeding – short review. Sodininkyste ir Darzininkyste 26(3), 296–308.

Korbin M., Kuras A., Żurawicz E., 2002. Fruit plant germplasm characterization using molecular markers in RAPD and ISSR-PCR. Cell Mol. Biol. Lett. 7(2B), 785–94.

Korbin M.U., 2011. Molecular approaches to disease resistance in Fragaria spp. J. Plant Protect. Res. 51, 60–65. https://doi.org/10.2478/v10045-011-0011-2 DOI: https://doi.org/10.2478/v10045-011-0011-2

Kuras A., Korbin M., Żurawicz E., 2004. Comparison of suitability of RAPD and ISSR techniques for determination of strawberry (Fragaria × ananassa Duch.) relationship. Plant Cell, Tissue Organ Cult. 79, 189–193. https://doi.org/10.1007/s11240-004-0659-7 DOI: https://doi.org/10.1007/s11240-004-0659-7

Kurze S., Bahl H., Dahl R., Berg G., 2001. Biological control of fungal strawberry diseases by Serratia plymuthica HRO-C48. Plant Dis. 85(5), 529–534. https://doi.org/10.1094/PDIS.2001.85.5.529 DOI: https://doi.org/10.1094/PDIS.2001.85.5.529

Maass J.L., 2004. Strawberry disease management. W: S.A.M.H. Naqvi (ed.), Diseases of fruits and vegetables, vol. 2. Kluwer Academic Publishers, 441–483. https://doi.org/10.1007/1-4020-2607-2_12 DOI: https://doi.org/10.1007/1-4020-2607-2_12

Maas J.L., Zhong L., Galletta G.J., 1993. In vitro screening of strawberry plant and root cultures for resistance to Phytophthora fragaria and P.cactorum. Acta Hortic. 348, 496–499. https://doi.org/10.17660/ActaHortic.1993.348.102 DOI: https://doi.org/10.17660/ActaHortic.1993.348.102

Mahmoud B.K., Najar A., Jedid E., Jemai N., Jemmali A., 2017. Tissue culture techniques for clonal propagation, viral sanitation and germplasm improvement in strawberry (Fragaria × ananassa Duch.). J. Agr. Biotechnol. 47(2), 2564–2576.

Marecki W., Żebrowska J., 2021. In vitro pathogenesis caused by Phytophthora cactorum and DNA analysis of the strawberry-resistant microplants with ISSR markers. Agronomy 11(7), 1279. https://doi.org/10.3390/agronomy11071279 DOI: https://doi.org/10.3390/agronomy11071279

Masny A., Żurawicz E., 2008. Podatność nowych odmian deserowych truskawki na wertycyliozę w warunkach polowych. Zesz. Nauk. Inst. Sadown. Kwiac. 16, 249–255.

Masny A., Żurawicz E., Markowski J., 2015. ‘Grandarosa’ Strawberry. HortScience 50(9), 1401–1404. DOI: https://doi.org/10.21273/HORTSCI.50.9.1401

McKinney H.H., 1923. Influence of soil temperature and moisture on infection of wheat seedlings by Helminthosporium sativum. J. Agri. Res. 26(5), 195–217.

Meszka B., Bielenin A., 2009. Bioproducts in control of strawberry Verticillium wilt. Phytopathologia 52, 21–27.

Meszka B., Masny A., Bielenin A., Żurawicz E., 2005. Podatność wybranych genotypów truskawki na wertycyliozę (Verticillium dahliae Kleb.). In: B. Michalik, E. Żurawicz, Zmienność genetyczna i jej wykorzystanie w hodowli roślin ogrodniczych, ISK Skierniewice, 327–331.

Michalik B., 2009. Zastosowanie kultur in vitro [The use of in vitro cultures]. In: B. Michalik (ed.), Hodowla roślin z elementami genetyki i biotechnologii [Plant breeding with elements of genetics and biotechnology]. PWRiL Poznań, 298–311.

Morales R., Resende J., Faria M., Andrade M., Resende L., Delatorre C., Silva P., 2011. Genetic similarity among strawberry cultivars assessed by RAPD and ISSR markers. Sci. Agric. 68, 665–670. https://doi.org/10.1590/S0103-90162011000600010 DOI: https://doi.org/10.1590/S0103-90162011000600010

Murashige T., Skoog F., 1962. A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol. Plant. 15(3), 473–497. https://doi.org/10.1111/j.1399-3054.1962.tb08052.x DOI: https://doi.org/10.1111/j.1399-3054.1962.tb08052.x

Nunes C.F., Ferreira J.L., Generoso A.L., Dias M.S.C., Pasqual M., Magela de Almeida G., 2013. The genetic diversity of strawberry (Fragaria × ananassa Duch.) hybrids based on ISSR markers. Acta Sci. Agron. 35, 443–452. https://doi.org/10.4025/actasciagron.v35i4.16737 DOI: https://doi.org/10.4025/actasciagron.v35i4.16737

Orlando R., Magro P., Rugini E., 1997. Pectic enzymes as a selective pressure tool for in vitro recovery of strawberry plants with fungal disease resistance. Plant Cell Reports 16, 272–276. https://doi.org/10.1007/BF01088279 DOI: https://doi.org/10.1007/BF01088279

Profic-Alwasiak H., 2000. Choroby korzeni i korony truskawki [Root and crown diseases of strawberries]. Sad Nowocz. 4, 9–11.

Rai M.K., Kalia R.K., Singh R., Gangola M.P., Dhawan A.K., 2011. Developing stress tolerant plants through in vitro selection – an overview of the recent progress. Environ. Exp. Bot. 71, 89–98. https://doi.org/10.1016/j.envexpbot.2010.10.021 DOI: https://doi.org/10.1016/j.envexpbot.2010.10.021

Rataj-Guranowska M., Drapikowska M., 2015. Verticillium dahliae Klebahn. In: M. Rataj-Guranowska (ed.), Compendium of plant diseases symptoms and morphology of disease agents. Institute of Plant Protection National Research Institute, Bogucki Wydawnictwo Naukowe, Poznań, 178–182.

Shaw D.V., Gubler W.D., Larson K.D., Hansen J., 1996. Genetic variation for field resistance to Verticillium Dahliae evaluated using genotypes and segregating progenies of California strawberries. J. Amer. Soc. Hort. Sci. 121(4), 625–628. https://doi.org/10.21273/JASHS.121.4.625 DOI: https://doi.org/10.21273/JASHS.121.4.625

Shokaeva D.B., Solovykh N.V., Skovorodnikov D.N., 2011. In Vitro selection and strawberry plant regeneration for developing resistance to Botrytis cinerea Pers., Phytophthora cactorum Leb. et Cohn (Schroet) and salinity stress. In: A.M. Husaini, J.A. Mercado (eds), Genomics, transgenics, molecular breeding and biotechnology of strawberry. Global Science Books, UK, 115–125.

Sowik I., Bielenin A., Michalczuk L., 2001. In vitro testing of strawberry resistance to Verticillium dahliae and Phytophthora cactorum. Sci. Hortic. 88(1), 31–40. https://doi.org/10.1016/S0304-4238(00)00195-3 DOI: https://doi.org/10.1016/S0304-4238(00)00195-3

Sowik I., Borkowska B., Markiewicz M., 2016. The activity of mycorrhizal symbiosis in suppressing Verticillium wilt in susceptible and tolerant strawberry (Fragaria × ananassa Duch.) genotypes. Appl. Soil Ecol. 101, 152–164. https://doi.org/10.1016/j.apsoil.2016.01.021 DOI: https://doi.org/10.1016/j.apsoil.2016.01.021

Sowik I., Markiewicz M., Michalczuk L., 2015. Stability of Verticillium dahliae resistance in tissue culture-derived strawberry somaclones. Hort. Sci. 42, 141–148. https://doi.org/10.17221/360/2014-HORTSCI DOI: https://doi.org/10.17221/360/2014-HORTSCI

Sowik I., Michalczuk L., Wójcik D., 2008. A method for in vitro testing strawberry susceptibility to Verticillium wilt. J. Fruit Ornam. Plant Res. 16, 111–121.

Sowik I., Wawrzynczak D., Michalczuk L., 2003. Ex vitro establishment and greenhouse performance of somaclonal variants of strawberry selected for resistance to Verticillium dahliae. Acta Hortic. 616, 497–500. https://doi.org/10.17660/ActaHortic.2003.616.78 DOI: https://doi.org/10.17660/ActaHortic.2003.616.78

Takahashi H., Takatsugu T., Tsutomu M., 1992. Resistant plants to Alternaria alternata strawberry pathotype selected from cali clones of strawberry cultivar Morioka-16 and their characteristics. J. Jpn. Soc. Hortic. 61, 323–329. DOI: https://doi.org/10.2503/jjshs.61.323

Toyoda H., Horikoshi K., Yamano Y., Ouchi S., 1991. Selection of Fusarium wilt disease resistance from regenerants derived from callus of strawberry. Plant Cell Rep. 10, 167–170. https://doi.org/10.1007/BF00234287 DOI: https://doi.org/10.1007/BF00234287

Whitaker V.M., 2011. Applications of molecular markers in strawberry. J Berry Res. 1, 115–127. https://doi.org/10.3233/BR-2011-013 DOI: https://doi.org/10.3233/BR-2011-013

Żebrowska J., Hortyński J., Cholewa T., Honcz K., 2006. Resistance to Verticillium dahliae (Kleb.) in the strawberry breeding lines. Commun. Agric. Appl. Biol. Sci. 71(3 Pt B), 1031–1036.

Żebrowska J.I., 2010. In vitro selection in resistance breeding of strawberry (Fragaria × ananassa duch.). Commun. Agric. Appl. Biol. Sci. 75(4), 699–704.

Żebrowska J.I., 2011., Efficacy of resistance selection to Verticillium wilt in strawberry (Fragaria × ananassa Duch.) tissue culture. Acta Agrobot. 64(3), 3–12. https://doi.org/10.5586/aa.2011.024 DOI: https://doi.org/10.5586/aa.2011.024

Żurawicz E., 1997. Hodowla twórcza truskawki w Polsce. Ogólnopolska Konferencja Truskawkowa: Skierniewice 2 grudnia 1997 r. [Creative breeding of strawberries in Poland. National Strawberry Conference: Skierniewice, December 2, 1997]. Wydawnictwo Instytutu Sadownictwa i Kwiaciarstwa, 3–9.


Opublikowane
22-01-2024



Jadwiga Żebrowska 
Department of Genetics and Horticultural Plant Breeding, Institute of Genetics, Breeding and Plant Biotechnology, Faculty of Agrobioengineering, University of Life Sciences in Lublin, Akademicka 15, 20-950 Lublin, Poland https://orcid.org/0000-0001-8962-8117
Wojciech Marecki 
Department of Genetics and Horticultural Plant Breeding, Institute of Genetics, Breeding and Plant Biotechnology, Faculty of Agrobioengineering, University of Life Sciences in Lublin, Akademicka 15, 20-950 Lublin, Poland https://orcid.org/0000-0001-6564-2571



Licencja

Creative Commons License

Utwór dostępny jest na licencji Creative Commons Uznanie autorstwa 4.0 Międzynarodowe.

Artykuły są udostępniane na zasadach CC BY 4.0 (do 2020 r. na zasadach CC BY-NC-ND 4.0)..
Przysłanie artykułu do redakcji oznacza, że nie był on opublikowany wcześniej i nie jest rozpatrywany do publikacji gdzie indziej.

Autor podpisuje oświadczenie o oryginalności dzieła, wkładzie poszczególnych osób i źródle finansowania.

 

Czasopismo Agronomy Science przyjęło politykę samoarchiwizacji nazwaną przez bazę Sherpa Romeo drogą niebieską. Od 2021 r. autorzy mogą samoarchiwizować postprinty artykułów oraz wersje wydawnicze (zgodnie z licencją CC BY). Artykuły z lat wcześniejszych (udostępniane na licencji CC BY-NC-ND 4.0) mogą być samoarchiwizowane tylko w wersji wydawniczej.