GENETIC DIVERSITY OF Pyricularia grisea, THE CAUSAL AGENT OF RICE BLAST BY SRR

Mohammad Reza Safari Motlagh

Islamic Azad University, Iran

Fatemeh Hbibi

Islamic Azad University, Iran

Ali Akbar Ebadi

Rice Research Institute of Iran



Abstract

Pyricularia grisea, the rice blast fungus is the main pathological threats to rice crop in Iran and worldwide. In this research was evaluated the genetic diversity of
P. grisea collected from different fields of Guilan province by using of 14 microsatellite primers. These primers produced 64 polymorphic bands by an average of 4.57 bands for each marker. An average of polymorphic information content in whole primers was 0.734, an average of effective number of alleles was 2.68, an average of Nei’s expected heterozygosity was 0.734 and an average of Shannon’s information index was 1.05. Primer SSR43,44 had the most polymorphic information content (PIC = 0.85), observed number of alleles (na = 8), effective number of alleles (ne = 3.76), Nei’s expected heterozygosity (Ne = 0.861) and Shannon’s information index (I = 1.38). This marker was the best primer between 14 used primers for evaluation the genetic diversity of P. grisea. Cluster analysis was done with simple matching similarity matrix and UPGMA method. The results showed that the studied isolates were classified into 3 lineages by cutting off the
dendrogram at 0.76 similar linkage level. Number 1 was the major group and represented most of those isolates. Results of principal coordinate analysis also divided the isolates into three groups exactly similar to obtained with cluster analysis. Overall, our results confirmed that microsatellite primers were good and suitable markers for analyzing structure of P. grisea.

Keywords:

blast, genetic variation, Pyricularia grisea, PCR, rice, SSR

Agrama, H., Tuinstra, M.R. (2003). Phylogenetic diversity and relationship among sorghum accessions using SSR and RAPD. African J. Biotechnol., 10, 334– 340.
Babujee, L., Gnanamanickam, S.S. (2000). Molecular tools for characterization of rice blast pathogen (Magnaporthe grisea) population and molecular marker-assisted breeding for disease resistance. Curr. Sci., 78(3), 248–257.
Brondani, C., Garrido, L.R., Ferreira, M.E. (2000). Development of microsatellite markers for the genetic analysis of Magnaporthe grisea. Gen. Mol. Biol., 23(4), 753–762.
Chadha, S., Gopalakrishna, T. (2005). Genetic diversity of Indian isolates of rice blast pathogen (Magnaporthe grisea) using molecular markers. Curr. Sci., 88(9), 1466–1469.
Consolo, V.F., Cordo, C.A., Salerno, G.L. (2008). DNA fingerprint and pathotype diversity of Pyricularia oryzae populations from Argentina. Australas. Plant Pathol., 37, 357–364.
George, M.L.C., Nelson, R.J., Zeigler, R.S., Leung, H. (1997). Rapid population analysis of Magnaporthe grisea by using rep-PCR and endogenous repetitive DNA sequences. The American Phytopathol. Soc., 88(3), 223–229.
Hemmati, R., Javan-Nikkhah, M., Okhovvat, S.M., Ghazanfari, K. (2005). Study on genetic diversity of Magnaporthe grisea using PCR and determination of the mating type alleles distribution in Mazandaran province, Iran. Commun. Agric. Appl. Biol. Sci., 70(3), 311–313.
Javan Nikkhah, M. (2001). Study on the genetic diversity of Magnaporthe grisea, rice blast pathogen by using molecular, pathogenicity and vegetative compatibility characters in Guilan province, Iran. Ph. D thesis, Depart. of Plant Pathology, Univ. of Tehran.
Jian-Hui, M., Ping, W., Dai-Hua, L., Zhong-Quan, H., Hui-li, Y., Lin, Y. (2008). Analysis of genetic diversity of Magnaporthe grisea in monoculture and mid-planting rice field based on SSR markers. Southwest China J. Agric. Sci., 21(5), 1294–2004.
Kimura, M., Crow, J.F. (1964). The number of alleles that can be maintained in a finite population. Genet., 49, 725–738.
Khodaparast, A.K., Sahragard, A. (2004). The rice diseases. University of Guilan publications.
Levy, M.J., Corra-Victoria, F., Zeigler, R.S., Xu, S., Hamr, J. (1993). Genetic diversity of the rice blast fungus in a disease nursery Colombia. The American Phytopathol. Soc., 83(12), 1427–1433.
Liu, L., Li, J., Su, Y., Wang, Y., Xie, Y., Zhu, Y. (2008). Polymorphism microsatellite sequence within ABC transporter genes in phytopathogenic Magnaporthe grisea. Computer and Computing Technologies in Agriculture, vol. 1. The International Federation for Information Processing, vol. 258, 553–558.
Ma, B.T., Qu, G.L., Shi, J., Chen, X., Lin, Y.F., Huang, W.J., Li, S.G. (2008). Genetic diversity of AVR-pita alleles of rice blast fungus Magnaporthe grisea. J. Mol. Cell Biol., 41(6), 495–499.
Mohan, M., Nair, S., Bhagwat, A., Krishna, T.G., Yano, M., Bhatia, C.R., Sasaki, T. (1997).
Genome mapping, molecular markers and marker-assisted selection in crop plants. Mol. Breed., 3, 87–103.
Motallebi, P., Javan-Nikkhah, M., Okhovvat, M., Berdi Fotouhifar, K., Mosahebi, G.H. (2009). Differentiation of Magnaporthe species complex by rep-PCR genomic fingerprinting. Commun. Agric. Appl. Biol. Sci., 74(3), 821–829.
Murray, M.G., Thompson, W.F. (1980). Rapid isolation of high molecular weight plant DNA. Nuc. Acids Res., 8, 4321–4325.
Nei, M., Takezaki, N., Sitnikova, T. (1995). Assessing molecular phylogenies. Science, 267, 253–254.
Ou, S.H. (1985). Rice diseases. Commonwealth Mycological Institute, 2nd.
Peakall, R., Smouse, P.E. (2006). GenAlEx 6: Genetic analysis in Excel. Population genetic software for teaching and research. Molec. Ecol. Not., 6, 288–295.
Piotti, E., Rigano, M.M., Rodolfi, R., Castiglione, M., Picco, A.M., Sala, F. (2005). Genetic structure of Pyricularia grisea, isolates from Italian paddy fields. J. Phytopathol., 153(2), 80–86.
Qing-Hua, P., Tie-Zhu, H., Ling, W., Jiang-Qiao, C. (2004). Molecular genetic studies on the rice blast fungus population DNA fingerprinting and pathotype analyses of the isolates selected from the region-specific lineages of Guangdong province, China. Sci. Agric. Sinica., 37(10), 1468–1473.
Rabiei, B., Sabouri, H. (2008). Locating the controlling genes for quantitative traits, University of Guilan publications.
Rohlf, F.J. (2000). NTSYS-pc: Numerical taxonomy and multivariate analysis system. Version 2.1. Exeter Publications, New York, USA.
Safari Motlagh, M.R., Javadzadeh, A. (2010). Evaluation of the reaction of Alisma plantagoaquatica and some rice cultivars to Curvularia lunata in the north of Iran. J. Food. Agr. Envir., 8(3–4), 828–831.
Séré, Y., Onasanya, A., Afolabi, A., Mignouna, H.D., Akator, K. (2007). Genetic diversity of the blast fungus, Magnaporthe grisea (Hebert) Barr, in Burkina Faso. African J. Biotech., 6(22), 2568–2577.
Shlens, J. (2005). A tutorial on principal component analysis, pp. 1–13. http://www. sn/salk.edu/shlens/
Silva, G.B., Prabhu, A.S., Filippi, M.C.C., Trindade, M.G., Araújo, L.G., Zambolim, L. (2009). Genetic and phenotypic diversity of Magnaporthe oryzae from leaves and panicles of rice in commercial fields in the State of Goiás, Brazil. Tropical Plant Pathol., 34(2), 77–86.
Sirithunya, P., Sreewongchai, T., Sriprakhon, S., Toojinda, T., Pimpisithavorn, S., Kosawang, C., Smitamana, P. (2008). Assessment of genetic diversity in Thai isolates of Pyricularia grisea by random amplification of polymorphic DNA. J. Phytopathol., 156(4), 196–204.
Winter, P., Kahl, G. (1995). Molecular marker technologies for plant improvement. World J. Microbiol. Biotechnol., 11, 438–448.
Yeh, F.C., Boyle, T.J.B. (1997). Population genetic analysis of co-dominant and dominant markers and quantitative traits. Belgian J. Bot., 129, 157.
Ying, S., Froun, J., Yue-Qiu, H., Kaya, C., Fang-Hua, X., Notteghem, J.L., Er-Ming, L., Tharreau, D. (2004). The perfect stage and SSR analysis of Magnaporthe grisea in Yanxi blast nursery. Chinese J. Rice Sci., 18(3), 262–268.
Zhou, H.F., Xie, Z.W., Ge, S. (2003). Microsatellite analysis of genetic diversity and population genetic structure of a wild rice (Oryza rufipogon Griff.) in China. Theor. Appl. Genet., 107(2), 332–339.
Download

Published
2015-02-28



Mohammad Reza Safari Motlagh 
Islamic Azad University, Iran
Fatemeh Hbibi 
Islamic Azad University, Iran
Ali Akbar Ebadi 
Rice Research Institute of Iran



License

 

Articles are made available under the conditions CC BY 4.0 (until 2020 under the conditions CC BY-NC-ND 4.0).
Submission of the paper implies that it has not been published previously, that it is not under consideration for publication elsewhere.

The author signs a statement of the originality of the work, the contribution of individuals, and source of funding.

 


Most read articles by the same author(s)