Chemical profile of Nepeta cataria L. var. citriodora (Becker) essential oil and in vitro evaluation of biological activities

Milica Acimovic

Institute of Field and Vegetable Crops Novi Sad
https://orcid.org/0000-0002-5346-1412

Vanja Seregelj

Faculty of Technology, University of Novi Sad, Serbia
https://orcid.org/0000-0003-0302-0851

Katarina Simić

Institute of Chemistry, Technology and Metallurgy, University of Belgrade, Serbia
https://orcid.org/0000-0001-5060-8936

Ana Varga

Institute of Food Technology, University of Novi Sad, Serbia

Lato Pezo

Institute of General and Physical Chemistry, University of Belgrade, Serbia
https://orcid.org/0000-0002-0704-3084

Jelena Vulić

Faculty of Technology, University of Novi Sad, Serbia
https://orcid.org/0000-0001-9349-7367

Ivana Cabarkapa

Institute of Food Technology, University of Novi Sad, Serbia
https://orcid.org/0000-0003-2215-4281


Abstract

Essential oil (EO) obtained by hydrodistillation in a Clevenger-type apparatus from aerial parts of Nepeta cataria L. var. citriodora (Becker), cultivated in Serbia was subjected to gas chromatography-mass spectroscopy (GC-MS) to determine the composition. Furthermore, N. cataria var. citriodora essential oil was
tested to determine its antimicrobial, antioxidant, antihyperglycemic and anti-inflammatory activities in vitro.
The antimicrobial activity was tested by broth microdilution method against 16 bacterial strains from American Type Culture Collection (ATCC). Four common tests for measuring in vitro antioxidant activity were used: 2, 2-diphenyl-1-picrylhydrazyl assay (DPPH), reducing power (RP), 2,2-azino-bis-3-ethylbenzothiazoline-
6-sulfonic acid (ABTS) and β-carotene bleaching assay (BCB). Antihyperglycemic activity was examined by using α-glucosidase inhibitory potential (AHgA), while anti-inflammatory activity (AIA) was determined by protein denaturation bioassay, using egg albumin. In total, 36 compounds were isolated and detected by GC-MS technique in N. cataria var. citriodora EO. The EO is mainly comprised of oxygenated monoterpenes (93.1%), and the main compounds were two monoterpenoid alcohols, nerol (38.5%) and geraniol (24.9%), followed by two aliphatic aldehyde, geranial (14.6%) and neral (11.0%). Antimicrobial activity of this EO shows growth inhibition of all tested bacteria strains, and exhibited good antioxidant, antihyperglycemic and anti-inflammatory activities. The EO obtained from N. cataria var. citriodora grown in Serbia shows valuable biological activity, indicating its potential for use as a supplement in everyday diet and as a natural preservative in food industry.

Keywords:

lemon catnip, antimicrobial activity, antioxidant activity, antihyperglycemic activity, anti-inflammatory activity

Abd Rashed, A., Abd Rahman, A.Z., Rathi, D.N.G. (2021). Essential oils as a potential neuroprotective remedy for age-related neurodegenerative diseases: a review. Molecules, 26(4), 1107. https://doi.org/10.3390/molecules26041107 DOI: https://doi.org/10.3390/molecules26041107

Aćimović, M., Zeremski, T., Kiprovski, B., Brdar-Jokanović, M., Popović, V., Koren, A., Sikora, V. (2021). Nepeta cataria – cultivation, chemical composition and biological activity. J. Agr. Tech. Eng. Manag., 4(4), 620–634.

Adiguzel, A., Ozer, H., Sokmen, M., Gulluce, M., Sokmen, A., Kilic, H., Sahin, F., Baris, O. (2009). Antimicrobial and antioxidant activity of the essential oil and methanol extract of Nepeta cataria. Pol. J. Microbiol. 58(1), 69–76.

Al-Saikhan, M.S., Howard, L.R., Miller, Jr. J.C. (1995). Antioxidant activity and total phenolics in different genotypes of potato (Solanum tuberosum, L.). J. Food Sci. 60(2), 341–343. https://doi.org/10.1111/j.1365-2621.1995.tb05668.x DOI: https://doi.org/10.1111/j.1365-2621.1995.tb05668.x

Aly, H.F., Mahmoud E.A., Ibrahim, M.E., Motawe, H.M., Ibrahim, F.M. (2010). Attenuation of some metabolic deterioration induced by diabetes mellitus using Nepeta cataria extracts. J. Am. Sci. 6(8), 436–455.

Baranauskiene, R., Venskutonis, R.P., Demyttenaere, J.C.R. (2003). Sensory and instrumental evaluation of catnip (Nepeta cataria L.) aroma. J. Agric. Food Chem. 51(13), 3840–3848. https://doi.org/10.1021/jf021187b DOI: https://doi.org/10.1021/jf021187b

Bernardi, M.M., Kirsten, T.B., Lago, J.H.G., Giovani, T.M., Massoco, C.O. (2011). Nepeta cataria L. var. citriodora (Becker) increases penile erection in rats. J. Ethnopharmacol. 137(3), 1318–1322. https://doi.org/10.1016/j.jep.2011.07.061 DOI: https://doi.org/10.1016/j.jep.2011.07.061

Bounihi, A., Hajjaj, G., Alnamer, R., Cherrah, Y., Zellou, A. (2013). In vivo potential anti-inflammatory activity of Melissa officinalis L. essential oil. Adv. Pharmacol. Sci. 101759. https://doi.org/10.1155/2013/101759 DOI: https://doi.org/10.1155/2013/101759

Duda, S.C., Mărghitaş, L.A., Dezmirean, D., Duda, M., Mărgăoan, R., Bobiş, O. (2015). Changes in major bioactive compounds with antioxidant activity of Agastache foeniculum, Lavandula angustifolia, Melissa officinalis and Nepeta cataria: effect of harvest time and plant species. Ind. Crops Prod. 77, 499–507. https://doi.org/10.1016/j.indcrop.2015.09.045 DOI: https://doi.org/10.1016/j.indcrop.2015.09.045

Frolova, N., Ukrainets, A., Korablova, O., Voitsekhivskyi, V. (2019). Plants of Nepeta cataria var. citridora Beck. and essential oils from them for food industry. Potr. Slovak J. Food Sci. 13(1), 449–455. https://doi.org/10.5219/1109 DOI: https://doi.org/10.5219/1109

Gironés-Vilaplana, A., Mena, P., Moreno, D.A., García-Viguera, C. (2014). Evaluation of sensorial, phytochemical and biological properties of new isotonic beverages enriched with lemon and berries during shelf life. J. Sci. Food Agric. 94(6), 1090–1100. https://doi.org/10.1002/jsfa.6370 DOI: https://doi.org/10.1002/jsfa.6370

Gomes, E.N., Reichert, W., Vasilatis, A., Allen, K.A., Wu, Q., Simon, J.E. (2020). Essential oil yield and aromatic profile of lemon catnip and lemon-scented catnip selections at different harvesting times. J. Med. Active Plants, 9(1), 21–33. https://doi.org/10.7275/6v2v-4333

Kim, J.-H., Jung, D.-H., Park, H.-K. (2006). The composition of essential oil from Nepeta cataria and its effect on microorganism. J. Ecol. Field Biol. 29(4), 381–387. https://doi.org/10.5141/JEFB.2006.29.4.381 DOI: https://doi.org/10.5141/JEFB.2006.29.4.381

Klimek, B., Modnicki, D. (2005). Terpenoids and sterols from Nepeta cataria L. var. citriodora (Lamiaceae). Acta Pol. Pharm. 62(3), 231–235.

Mena, P., Garcia-Viguera, C., Navarro-Rico, J., Moreno, D.A., Bartual, J., Saura, D., Marti, N. (2011). Phytochemical characterisation for industrial use of pomegranate (Punica granatum L.) cultivars grown in Spain. J. Sci. Food Agric. 91, 1893–1906. https://doi.org/10.1002/jsfa.4411 DOI: https://doi.org/10.1002/jsfa.4411

Miceli, N., Taviano, M.F., Giuffrida, D., Trovato, A., Tzakou, O., Galati, E.M. (2005). Anti-inflammatory activity of extract and fractions from Nepeta sibthorpii Bentham. J. Ethnopharm. 97, 261–266. https://doi.org/10.1016/j.jep.2004.11.024 DOI: https://doi.org/10.1016/j.jep.2004.11.024

Mihaylova, D., Georgieva, L., Pavlov, P. (2013). In vitro antioxidant activity and phenolic composition of Nepeta cataria L. extracts. Int. J. Appl. Sci. Technol. 14, 74–79.

Modnicki, D., Tokar, M., Klimek, B. (2007). Flavonoids and phenolic acids of Nepeta cataria L. var. citriodora (Becker) Balb. (Lamiaceae). Acta Pol. Pharm. 64, 247–252.

Mucha, W., Witkowska, D. (2021). The applicability of essential oils in different stages of production of animal-based foods. Molecules, 26, 3798. https://doi.org/10.3390/molecules26133798 DOI: https://doi.org/10.3390/molecules26133798

Onawunmi, G.O. (1989). Evaluation of the antimicrobial activity of citral. Lett. Appl. Microbiol., 9, 105–108. https://doi.org/10.1111/j.1472-765X.1989.tb00301.x DOI: https://doi.org/10.1111/j.1472-765X.1989.tb00301.x

Oyaizu, M. (1986). Studies on product of browning reaction from glucose amine. Jpn. J. Nutr. Diet. 44, 307–315. https://doi.org/10.5264/eiyogakuzashi.44.307 DOI: https://doi.org/10.5264/eiyogakuzashi.44.307

Pandey, A.K., Kumar, P., Singh, P., Tripathi, N.N., Bajpai, V.K. (2017). Essential oils: sources of antimicrobials and food preservatives. Front. Microbiol., 7, 2161. https://doi.org/10.3389/fmicb.2016.02161 DOI: https://doi.org/10.3389/fmicb.2016.02161

Prakash, B., Kiran, S. (2016). Essential oils: a traditionally realized natural resource for food preservation. Curr. Sci., 110, 1890–1892.

Pucci, M., Raimondo, S., Zichittella, C., Tinnirello, V., Corleone, V., Aiello, G., Moschetti, M., Conigliaro, A., Fontana, S., Alessandro, R. (2020). Biological properties of a citral-enriched fraction of citrus limon essential oil. Foods., 9, 1290. https://doi.org/10.3390/foods9091290 DOI: https://doi.org/10.3390/foods9091290

Ricci, E.L., Toyama, D.O., Lago, J.H.G., Romoff, P., Kirsten, T.B., Reis-Silva, T.M., Bernardi, M.M. (2010). Anti-nociceptive and anti-inflammatory actions of Nepeta cataria L. var. citriodora (Becker) Balb. essential oil in mice. J. Health Sci. Inst., 28, 289–293.

Tan, X.C., Chua, K.H., Ravishankar-Ram, M., Kuppusamy, U.R. (2016). Monoterpenes: novel insights into their biological effects and roles on glucose uptake and lipid metabolism in 3T3-L1 adipocytes. Food Chem., 196, 242–250. https://doi.org/10.1016/j.foodchem.2015.09.042 DOI: https://doi.org/10.1016/j.foodchem.2015.09.042

Tumbas Šaponjac, V., Girones-Vilaplana, A., Djilas, S., Meno, P., Ćetković, G., Moreno, D., Čanadanović-Brunet, J., Vulič, J., Stajčić, S., Krunić, M. (2014). Anthocyanin profiles and biological properties of caneberry (Rubus spp.) press residues. J. Sci. Food Agric., 94, 2393–2400. https://doi.org/10.1002/jsfa.6564 DOI: https://doi.org/10.1002/jsfa.6564

Uchida N.S., Silva-Filho S.E., Cardia G.F.E., Cremer E., Silva-Comar F.M.S., Silva E.L., Bersani-Amado C.A., Cuman R.K.N. (2017). Hepatoprotective effect of citral on acetaminophen-induced liver toxicity in mice. J. Evid.-Based Compl. Altern. Med. 2017, 1796209. https://doi.org/10.1155/2017/1796209 DOI: https://doi.org/10.1155/2017/1796209

Ullah, A.M., Zaman, S., Juhara, F., Akter, L., Tareq, S.M., Masum, E.H., Bharracharjee, R. (2014). Evaluation of antinociceptive, in-vivo&in-vitro anti-inflammatory activity of ethanolic extract of Curcuma zedoaria rhizome. BMC Complement Altern. Med., 14, 346–358. https://doi.org/10.1186/1472-6882-14-346 DOI: https://doi.org/10.1186/1472-6882-14-346

Varga, A., Kocić-Tanackov, S., Čabarkapa, I., Aćimović, M., Tomičić, Z. (2019). Chemical composition and antibacterial activity of spice essential oils against Escherichia coli and Salmonella Typhimurium. J. Food Saf. Food Qual., 70, 157–194. https://doi.org/10.2376/0003-925X-70-177

Vukovic, N., Vukic, M., Djelic, G., Hutkova, J., Kacaniova, M. (2016). Chemical composition and antibacterial activity of essential oils of various plant organs of wild growing Nepeta cataria from Serbia. J. Essent. Oil Bear. Plants., 19, 404–1412. https://doi.org/10.1080/0972060X.2016.1211965 DOI: https://doi.org/10.1080/0972060X.2016.1211965

Wieteska, A., Jadczak, D., Wesolowska, A. (2018). Comparison of the biological value of selected catnip plants (Nepeta sp.). Acad. J. Med. Plants., 6, 191–195. https://doi.org/10.15413/ajmp.2018.0135

Zomorodian, K., Saharkhiz, M. J., Shariati, S., Pakshir, K., Rahimi, M.J., Khashei, R. (2012). Chemical composition and antimicrobial activities of essential oils from Nepeta cataria L. against common causes of food-borne infections. ISRN Pharm. 2012, 591953. https://doi.org/10.5402/2012/591953 DOI: https://doi.org/10.5402/2012/591953

Download

Published
2022-08-31



Milica Acimovic 
Institute of Field and Vegetable Crops Novi Sad https://orcid.org/0000-0002-5346-1412
Vanja Seregelj 
Faculty of Technology, University of Novi Sad, Serbia https://orcid.org/0000-0003-0302-0851
Katarina Simić 
Institute of Chemistry, Technology and Metallurgy, University of Belgrade, Serbia https://orcid.org/0000-0001-5060-8936
Ana Varga 
Institute of Food Technology, University of Novi Sad, Serbia
Lato Pezo 
Institute of General and Physical Chemistry, University of Belgrade, Serbia https://orcid.org/0000-0002-0704-3084
Jelena Vulić 
Faculty of Technology, University of Novi Sad, Serbia https://orcid.org/0000-0001-9349-7367
Ivana Cabarkapa 
Institute of Food Technology, University of Novi Sad, Serbia https://orcid.org/0000-0003-2215-4281



License

 

Articles are made available under the conditions CC BY 4.0 (until 2020 under the conditions CC BY-NC-ND 4.0).
Submission of the paper implies that it has not been published previously, that it is not under consideration for publication elsewhere.

The author signs a statement of the originality of the work, the contribution of individuals, and source of funding.