In vitro CULTURE OF BIG-SAGE (Lantana camara L.) PLANT

Majid Abdulhameed Ibrahim

College of Agriculture, University of Basrah, Basrah, Iraq

Manal Zebari Sabty

College of Agriculture, University of Basrah, Basrah, Iraq

Shaimaa Hussein Mussa

College of Agriculture, University of Basrah, Basrah, Iraq


Abstract

The study was conducted to mass micropropagation of big sage (Lantana camara L.) plant by shoot multiplication technique. The treatments 2.22 and 2.66 µmol·L–1 BA gave the highest significant increase in the percentage of response to shoot multiplication and number of shoots per explant compared to the other treatments as reached 96.70% and 100.00% and 4.33 and 6.00 shoots, respectively. The results showed that these two treatments did not differ significantly between them. While the 1.33 µmol·L–1 BA gave the lowest values in the percentage of response to shoot multiplication and number of shoots per explant were 80.00% and 2.00 shoots per explant, respectively. The MS medium supplemented with 4.30 or 5.37 µmol·L–1 NAA gave a high response to root formation, number of roots per shoot and root length. While the MS medium supplemented with 6.44 or 7.52 µmol·L–1 NAA gave low values in these characteristics. The MS medium with 2.22 or 2.66 µmol·L–1 concentration of BA or 7.52 µmol·L–1 concentration of NAA recorded the highest significant increase in the percentage of response to callus formation. While the MS medium supplemented with 1.33 µmol·L–1 BA or 4.30 µmol·L–1 NAA gave less response to the callus formation.

Keywords:

benzyl adenine, callus induction, explant, micropropagation rooting, shoot multiplication

Abbas, M.F., Ibrahim, M.A., Jasim, A.M. (2014). Micropropagation of Indian jujube (Ziziphus muritiana Lam. cv. Zaytoni) through shoot tip culture. AAB Bioflux, 6(1), 11–15.

Affonso, V.R., Bizzo, H.R., Lima, S.S., Esquibela, M.A., Sato, A. (2007). Solid Phase Microextraction (SPME) analysis of volatiles produced by in vitro shoots of Lantana camara L. under the influence of auxins and cytokinins. J. Braz. Chem. Soc., 18(8), 1504–1508. DOI: 10.1590/S0103-50532007000800009

Al-Maari, K.H. (1995). [Palm Propagation by Plant Tissue Culture Technique]. College of Agriculture, University of Damascus, Syria, pp. 256 [in Arabic].

Assareh, M.H., Sardabi, H. (2005). Macropropagation and micropropagation of Ziziphus spinachristi. Pesq. Agropec. Bras., 40(5), 459–465. DOI: 10.1590/S0100-204X2005000500006

Charan, S., Kamlesh, C. (2015). Micropropagation and analysis of the phytochemical profile of Lantana camara whole plant extraction. World J. Pharm. Pharm. Sci., 4(8), 1907–1919.

Gorai, D., Jash, S.K., Roy, R. (2016). Ethnopharmacological, phytochemical, pharmacological and toxicological aspects of Lantana camara L.: a comprehensive review. Adv. Biomed. Pharma., 3(5), 328–357.

Hopkins, W.G., Hüner, N.P.A. (2008). Introduction to Plant Physiology. J. Wiley and Sons, Hoboken, New Jersey.

Ibrahim, M.A. (2012). In vitro plant regeneration of local pummelo (Citrus grandis (L.) Osbeck.) via direct and indirect organogenesis. Genet. Plant Physiol., 2(3–4), 187–191.

Ibrahim, M.A., Jasim, A.M., Abbas, M.F. (2011). Somatic embryogenesis and plantlet regeneration in Indian jujube (Ziziphus mauritiana lamk.) cv. Zaytoni. Genet. Plant Physiol., 1(3–4), 150–154.

Ibrahim, M.A., Al-Taha, H.A., Saaid, Z.A. (2013). Propagation of strawberry via in vitro adventitious shoots formation technique. Iraqi J. Agric. Sci., 44(1), 69–80.

Ibrahim, M.A., Daraj, I.A. (2015). Micropropagation of dahlia plants (Dahlia variabilis). Direct and indirect organogenesis techniques. AAB Bioflux, 7(1), 28–35.

Kalita, S., Kumar, G., Karthik, L., Rao, K.V.B. (2012). A review on medicinal properties of Lantana camara L. Res. J. Pharm. Tech., 5, 711–715.

Lonare, M.K., Sharma, M., Hajare, S.W., Borekar, V.I. (2012). Lantana camara: overview on toxic to potent medicinal properties. Int. J. Pharm. Sci. Res., 3(9), 3031–3035.

Murashige, T., Skoog, F. (1962). A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plant., 15, 473–497. DOI: 10.1111/j.1399-3054.1962.tb08052.x

Reddy, N.M. (2013). Lantana camara L. chemical constituents and medicinal properties. A review. Sch. Acad. J. Pharm., 2, 445–448.

Samani, E.N., Jabbarzadeh, Z., Ghobadi, S., Motamedi, M. (2014). Effect of different concentrations of plant growth regulators on micropropagation of Lantana camara. J. Med. Plant Res., 8(44), 1299–1303.

Snedecor, G.M., Cochran, W.G. (1986). Statistical Methods, 9th ed. The Iowa State Univ., Press. Amer. Iowa, U.S.A., pp. 507.

Taiz, L., Zeiger, E. (2010). Plant Physiology, 5 ed. Sinecure Associates, Inc. Publishers, Sunderland, MA, pp. 623.

Veraplakorn, V. (2016). Micropropagation and callus induction of Lantana camara L. – A medicinal plant. Agric. Natur. Res., 50, 338–344.

Waoo, A.A., Khare, S., Ganguly, S. (2013). In vitro culture of Lantana camara from nodal and shoot tip explants in phytoremediation studies. Curr. Trends Tech. Sci., 2, 183–186.

Download

Published
2020-04-24



Majid Abdulhameed Ibrahim 
College of Agriculture, University of Basrah, Basrah, Iraq
Manal Zebari Sabty 
College of Agriculture, University of Basrah, Basrah, Iraq
Shaimaa Hussein Mussa 
College of Agriculture, University of Basrah, Basrah, Iraq



License

 

Articles are made available under the conditions CC BY 4.0 (until 2020 under the conditions CC BY-NC-ND 4.0).
Submission of the paper implies that it has not been published previously, that it is not under consideration for publication elsewhere.

The author signs a statement of the originality of the work, the contribution of individuals, and source of funding.