Current developments in canine molecular genetics. A review

Brygida Ślaska

Department of Biological Bases of Animal Production University of Life Sciences in Lublin, Akademicka 13, 20-950 Lublin

Sylwia Nisztuk

Department of Biological Bases of Animal Production University of Life Sciences in Lublin, Akademicka 13, 20-950 Lublin

Katarzyna Plewka

Department of Biological Bases of Animal Production University of Life Sciences in Lublin, Akademicka 13, 20-950 Lublin

Magdalena Surdyka

Department of Biological Bases of Animal Production University of Life Sciences in Lublin, Akademicka 13, 20-950 Lublin



Abstrakt

In recent years, great progress in canine molecular genetics has been observed. DNA sequencing of a female Boxer was started in 2003. The next version of the dog genome sequence
is now available online. Recently a microchip SNP array, covering over 170 thousand SNPs, has also become available. Simultaneously with the development of genetic maps and increasing accuracy of sequencing, a large number of causal mutations for various traits were identified. Most mutations were responsible for monogenic inherited diseases in dogs, but also for other traits. To date, candidate genes as markers for the size, colour and structure of hair, skeletal metric traits, behaviour and physiological traits were identified. At present, research of quantitative trait loci (QTL), analysis of candidate genes, and genome-wide association studies (GWAS) are carried out in dogs. In addition, the dog has become an animal model for many human hereditary diseases, as well as for farm animals. Recent studies primarily consist in determination of causal mutations that can lead to the development of genetic diseases, occurring in both dogs and humans. In the future, the results can be used to develop new treatments for inherited diseases in both species.

Słowa kluczowe:

dog, SNP, QTL, molecular determination of traits, hereditary diseases, gene therapy, human

Akey J.M., Ruhe A.L., Akey D.T., Wong A.K., Connelly C.F., Madeoy J., Nicholas T.J., Neff M.W., 2010. Tracking footprints of artificial selection in the dog genome. PNAS 107, 1160–5.
Andersson L. 2009. Genome-wide association analysis in domestic animals: a powerful approach for genetic dissection of trait loci. Genetica 136, 341–34.
Andersson L., Georges M., 2004. Domestic-animal genomics: deciphering the genetics of complex traits. Nat. Rev. Genet. 5, 202–212.
Berryere T.G., Kerns J.A., Barsh G.S., Schmutz S.M., 2005. Association of an Agouti allele with fawn or sable coat color in domestic dogs. Mamm. Genome 16, 262–272.
Bérubé S. Johnsson P. Bunimov N. Boivin C. Laneuville O., 2012. Two length variants of the microsatellite FH2295 as markers for body size of female Portuguese water dogs. J. Appl.
Genetics 53, 121–123.
Breen M., 2008. Canine cytogenetics from band to basepair. Cytogenet. Genome Res. 120, 50–60.
Breen M., Jouquand S., Renier C., Mellersh C.S., Hitte C. et al. 2001. Chromosome-specific single-locus FISH probes allow anchorage of an 1800-marker integrated radiation-hybrid/linkage
map of the domestic dog genome to all chromosome. Genome Res. 11, 1784–1795.
Cadieu E., Neff M.W., Quignon P., Walsh K., Chase K. et al. 2009. Coat variation in the domestic dog is governed by variants in three genes. Science 326, 150–153.
Candille S.I., Kaelin C.B., Cattanach B.M., Yu B., Thompson D.A. et al. 2007. A b-defensin mutation causes black coat color in domestic dogs. Science 318, 1418–1423.
Chase K., Carrier D.R., Adler F.R., Jarvik T., Ostrander E.A. et al. 2002. Genetic basis for systems of skeletal quantitative traits: Principal component analysis of the canid skeleton. Proc. Natl.
Acad. Sci. 99, 9930–9935.
DeNise S., Johnston E., Halverson J., Marshall K., Rosenfeld D. et al. 2004. Power of exclusion for parentage verification and probability of match for identity in American kennel club
breeds using 17 canine microsatellite markers. Anim. Genet. 35, 14–17.
Derrien T., Vaysse A., André C., Hitte C., 2012. Annotation of the domestic dog genome sequence: finding the missing genes. Mamm Genome 23, 124-131.
DogMap Consortium, 1999. DogMap: an international collaboration toward a low-resolution canine genetic marker map. J. Hered. 90, 3–6.
Fondon J.W., Garner H.R., 2004. Molecular origins of rapid and continuous morphological evolution. Proc. Natl. Acad. Sci. USA 101, 18058–18063.
Fredholm M., Wintero A.K., 1996. Efficient resolution of parentage in dogs by amplification of microsatellites. Anim. Genet. 27, 19–23.
Goodstadt L., Ponting C.P., 2006. Phylogenetic reconstruction of orthology, paralogy, and conserved synteny for dog and human. PLoS Comput. Biol. 2, 9, e133.
Haworth K.E., Islam I., Breen M., Putt W., Makrinou E. et al., 2001. Canine TCOF1; cloning, chromosome assignment and genetic analysis in dogs with different head types. Mamm. Genome
12, 622–629.
Kang B.T., Kim K.S., Min M.S., Chae Y.J., Kang J.W. et al., 2009. Microsatellite loci analysis for the genetic variability and the parentage test of five dog breeds in South Korea. Genes Genet.
Syst. 84, 245–51.
Karlsson E.K., Baranowska I., Wade C.M., Salmon Hillbertz N.H.C., Zody M.C. et al., 2007. Efficient mapping of Mendelian traits in dogs through genome-wide association. Nat. Genet.
39, 1321–1328.
Kerns J.A., Olivier M., Lust G., Barsh G.S. 2003. Exclusion of melanocortin-1 receptor (mc1r) and agouti as candidates for dominant black in dogs. J. Hered. 94, 75–79.
Kijas J.M.H., Bauer T.R., Gafvert S., Marklund S., Trowald-Wigh G. et al., 1999. A missence mutation in the b-2 integrin gene (ITGB2) causes canine leukocyte adhesion deficiency. Genomics
61, 101–107.
Kirkness E.F., Bafna V., Halpern A.L., Levy S., Remington K. et al., 2003. The dog genome: Survey sequencing and comparative analysis. Science 301, 1898–1903.
Kruglyak L. 1999. Prospects for whole-genome linkage disequilibrium mapping of common disease genes. Nat. Genet. 22, 139–144.
Lequarré A-S., Andersson L., André C., Fredholm M., Hitte C. et al., 2011. LUPA: A European initiative taking advantage of the canine genome architecture for unravelling complex disorders
in both human and dogs. Vet. J. 189, 155–159.
Lindblad-Toh K., Wade C.M., Mikkelsen T.S., et al., 2005. Genome sequence, comparative analysis and haplotype structure of the domestic dog. Nature 438, 803–819.
Mellersh C.S., Langston A.A., Acland G.M., Fleming M.A., Ray K. et al., 1997. A linkage map of the canine genome. Genomics 46, 326–336.
Miyadera K., Kato K., Boursnell M., Mellersch C.S., Sargan D.R., 2012. Genome-wide association study in RPGRIP1-/- dogs identifies a modifier locus that determines the onset of retinal
degeneration. Mamm Genome 23, 212–223.
Mosher D.S., Quignon P., Bustamante C.D., Sutter N.B., Mellersh C.S. et al., 2007. A mutation in the myostatin gene increases muscle mass and enhances racing performance in heterozygote dogs. PLoS Genet. 3, e79.
Neff M.W., Broman K.W., Mellersh C.S., Ray K., Acland G.M. et al., 1999. A Second-Generation Genetic Linkage Map of the Domestic Dog, Canis familiaris. Genetics 151, 803–820.
Nowend K. L., Starr-Moss A. N., Murphy K. E., 2011. The function of dog models in developing gene therapy strategies for human health. Mamm Genome 22, 476–485.
Ostrander E.A., Wayne R.K., 2005. The canine genome. Genome Res. 15, 1706–1716.
Parker H.G., Kim L.V., Sutter N.B., Carlson S., Lorentzen T.D. et al. 2004. Genetic structure of the purebred domestic dog. Science 304, 1160–1164.
Philipp U., Hamann H., Mecklenburg L., Nishino S., Mignot E. et al., 2005. Polymorphisms within the canine MLPH gene are associated with dilute coat color in dogs. BMC Genet.
6, 34.
Roberts M.C., Mickelson J.R., Patterson E.E., Nelson T.E., Armstrong P.J., 2001. Autosomal dominant canine malignant hyperthermia is caused by a mutation in the gene encoding the
skeletal muscle calcium release chanel (RYR1). Anesthesiology 95, 716–725.
Salmon Hillbertz N.H., Isaksson M., Karlsson E.K., Hellmén E., Pielberg G.R. et al., 2007. Duplication of FGF3, FGF4, FGF19 and ORAOV1 causes hair ridge and predisposition to dermoid
sinus in Ridgeback dogs. Nat. Genet. 39, 1318–20.
Shearin A. L., Ostrander E. A., 2010. Leading the way: canine models of genomics and disease. Disease Models & Mechanisms 3, 27–34.
Ślaska B., 2010. Genomika strukturalna jenota (Nyctereutes procyonoides procyonoides). Rozpr. Nauk. UP w Lublinie, 348.
Ślaska B., Jeżewska G., Pierzchała M., Zięba G., 2007. Genetic background of raccoon dog conformation traits and mapping of quantitative trait loci. Ann. Anim. Sci., 7, 237–244.
Ślaska B., Jeżewska G., Zięba G., Pierzchała M., 2008. Genetic variability and linkage of selected microsatellite markers in the Chinese raccoon dog (Nyctereutes procyonoides procyonoides).
Arch. Anim. Breed. 51, 187–198.
Sutter N.B., Bustamante C.D., Chase K., Gray M.M., Zhao K. et al. 2007. A single IGF1 allele is a major determinant of small size in dogs. Science 316, 112–115.
Sutter N.B., Eberle M.A., Parker H.G., Pullar B.J., Kirkness E.F. et al., 2004. Extensive and breedspecific linkage disequilibrium in Canis familiaris. Genome Res. 14, 2388–2396.
Sutter N.B., Mosher D.S., Gray M.M., Ostrander E.A., 2008. Morphometrics within dog breeds are highly reproducible and dispute Rensch’s rule. Mamm Genome 19, 713–723.
Świtoński M., 2004. Gene mutations causing hereditary diseases in dogs. Anim. Sci. Pap. Rep. 22, 131–134.
Świtoński M., Szczerbal I., 2008. Comparing the Human and Canine Genomes. In: Encyclopedia of Life Sciences (ELS). John Wiley & Sons, Chichester. The International HapMap Consortium, 2003. The International HapMap Project. Nature 426, 789–796.
Werner P., Mellersh C.S., Raducha M.G., Derose S., Acland G.M. et al., 1999. Anchoring of canine linkage groups with chromosome-specific markers. Mamm. Genome 10, 814–823.
Wilson B. J., Wade C. M., 2012. Empowering international canine inherited disorder management. Mamm. Genome 23, 195–202.
Wong A.K., Ruhe A.L., Dumont B.L., Robertson K.R., Guerrero G. et al., 2010. A comprehensive linkage map of the dog genome. Genetics, 184, 595–605.
Zajc I., Sampson J., 1999. Utility of canine microsatellites in revealing the relationships of pure bred dogs. J. Hered. 90, 104–107.
Zanna G., Fondevila D., Bardagi M., Docampo M.J., Bassols A. et al., 2008. Cutaneous mucinosis in Shar-Pei dogs is due to hyaluronic acid deposition and is associated with high levels of
hyaluronic acid in serum. Vet. Dermatol. 19, 314–318.

Opublikowane
2012-09-30



Brygida Ślaska 
Department of Biological Bases of Animal Production University of Life Sciences in Lublin, Akademicka 13, 20-950 Lublin
Sylwia Nisztuk 
Department of Biological Bases of Animal Production University of Life Sciences in Lublin, Akademicka 13, 20-950 Lublin
Katarzyna Plewka 
Department of Biological Bases of Animal Production University of Life Sciences in Lublin, Akademicka 13, 20-950 Lublin
Magdalena Surdyka 
Department of Biological Bases of Animal Production University of Life Sciences in Lublin, Akademicka 13, 20-950 Lublin



Licencja

Od 2022 r. artykuły są udostępniane na zasadach licencji Creative Commons uznanie autorstwa 4.0 międzynarodowa (CC BY 4.0). Artykuły opublikowane przed 2022 r. są dostępne na zasadach licencji Creative Commons uznanie autorstwa – użycie niekomercyjne – bez utworów zależnych 4.0 międzynarodowa  (CC BY-NC-ND 4.0).

Przysłanie artykułu do redakcji oznacza, że nie był on opublikowany wcześniej, nie jest rozpatrywany do publikacji w innych wydawnictwach.

Autor podpisuje oświadczenie o oryginalności dzieła i wkładzie poszczególnych osób.


Inne teksty tego samego autora