Przejdź do głównego menu Przejdź do sekcji głównej Przejdź do stopki

Nr ONLINE FIRST

Articles

Neuroprotective effect of berberine based on the Alzheimer’s disease model

DOI: https://doi.org/10.24326/jasbb.2025.5583
Przesłane: 6 sierpnia 2025
Opublikowane: 19.12.2025

Abstrakt

Berberine, an isoquinoline alkaloid, is a substance used in traditional East Asian folk medicine. It is naturally found in many plant species, especially those of the Berberis genus. It has multifaceted anti-inflammatory and neuroprotective properties. The ageing population is currently affected by the growing prevalence of neurodegenerative diseases, the most common of which is Alzheimer’s disease. Berberine provides multidirectional protective and therapeutic effects against pathological neuronal changes. Its application reduces the synthesis of amyloid-β and tau protein plaques. In addition, it exhibits an effect typically associated with drugs currently used to treat this disease – cholinesterase inhibition. It has been shown that the use of berberine reduces inflammation in nervous tissue, inhibits apoptosis mechanisms and promotes neuronal repair processes. However, further preclinical studies are required to assess its efficacy and toxicity.

Bibliografia

  1. Adefegha S.A., Oboh G., Okeke B.M., 2021. Comparative effects of berberine and piperine on the neuroprotective potential of neostigmine. J. Complement. Integr. Med. 18(3), 491–497. https://doi.org/10.1515/jcim-2020-0055
  2. Alzheimer Europe, 2019. Dementia in Europe Yearbook 2019. https://www.alzheimer-eu-rope.org/sites/default/files/alzheimer_europe_dementia_in_europe_yearbook_2019.pdf [access: 26.07.2025].
  3. Amat-Ur-Rasool H., Ahmed M., Hasnain S. et al., 2021a. In silico design of dual-binding site anti-cholinesterase phytochemical heterodimers as treatment options for Alzheimer’s disease. Curr. Issues Mol. Biol. 44(1), 152–175. https://doi.org/10.3390/cimb44010012
  4. Amat-Ur-Rasool H., Ahmed M., Hasnain S. et al., 2021b. Anti-cholinesterase combination drug therapy as a potential treatment for Alzheimer’s disease. Brain Sci. 11(2), 184. https://doi.org/10.3390/brainsci11020184
  5. Chen M., Li L., Liu C. et al., 2020. Berberine attenuates Aβ-induced neuronal damage through regulating miR-188/NOS1 in Alzheimer’s disease. Mol. Cell Biochem. 474(1–2), 285–294. https://doi.org/10.1007/s11010-020-03852-1
  6. Chu M., Chen X., Wang J. et al., 2018. Polypharmacology of berberine based on multi-target binding motifs. Front Pharmacol. 9, 801. https://doi.org/10.3389/fphar.2018.00801
  7. DeTure M.A., Dickson D.W., 2019. The neuropathological diagnosis of Alzheimer’s disease. Mol. Neurodegener. 14(1), 32. https://doi.org/10.1186/s13024-019-0333-5
  8. GBD 2019 Dementia Forecasting Collaborators, 2022. Estimation of the global prevalence of dementia in 2019 and forecasted prevalence in 2050: an analysis for the Global Bur-den of Disease Study 2019. Lancet Publ. Health 7(2), e105–e125. https://doi.org/10.1016/S2468-2667(21)00249-8
  9. Ge Y., Song X., Liu J. et al., 2020. The combined therapy of berberine treatment with lncRNA BACE1-AS depletion attenuates Aβ25-35 induced neuronal injury through regulating the expression of miR-132-3p in neuronal cells. Neurochem. Res. 45(4), 741–751. https://doi.org/10.1007/s11064-019-02947-6
  10. Guo Q., Wang C., Xue X. et al., 2021. SOCS1 mediates berberine-induced amelioration of microglial activated states in N9 microglia exposed to β amyloid. Biomed. Res. Int. 9311855. https://doi.org/10.1155/2021/9311855
  11. Hernández C., Bogdanov P., Gómez-Guerrero C. et al., 2019. SOCS1-derived peptide admin-istered by eye drops prevents retinal neuroinflammation and vascular leakage in exper-imental diabetes. Int. J. Mol. Sci. 20(15), 3615. https://doi.org/10.3390/ijms20153615
  12. Kong X.P., Liu E.Y.L., Chen Z.C. et al., 2019. Synergistic inhibition of acetylcholinesterase by alkaloids derived from Stephaniae Tetrandrae Radix, Coptidis Rhizoma and Phelloden-dri Chinensis Cortex. Molecules 24(24), 4567. https://doi.org/10.3390/molecules24244567
  13. Li P., Liu S., Liu Q. et al., 2019. Screening of acetylcholinesterase inhibitors and characteriz-ing of phytochemical constituents from Dichocarpum auriculatum (Franch.) W.T. Wang & P.K. Hsiao through UPLC-MS combined with an acetylcholinesterase inhibition assay in vitro. J. Ethnopharmacol. 245, 112185. https://doi.org/10.1016/j.jep.2019.112185
  14. Liang Y., Ye C., Chen Y. et al., 2021. Berberine improves behavioral and cognitive deficits in a mouse model of Alzheimer’s disease via regulation of β-amyloid production and en-doplasmic reticulum stress. ACS Chem. Neurosci. 12(11), 1894–1904. https://doi.org/10.1021/acschemneuro.0c00808
  15. Lin L., Li C., Zhang D. et al., 2020. Synergic effects of berberine and curcumin on improving cognitive function in an Alzheimer’s disease mouse model. Neurochem. Res. 45(5), 1130–1141. https://doi.org/10.1007/s11064-020-02992-6
  16. Mittal S., Ashhar M.U., Qizilbash F.F. et al., 2020. Ligand conjugated targeted nanotherapeu-tics for treatment of neurological disorders. Curr. Pharm. Des. 26(19), 2291–2305. https://doi.org/10.2174/1381612826666200417141600
  17. Neag M.A., Mocan A., Echeverría J. et al., 2018. Berberine: botanical occurrence, traditional uses, extraction methods, and relevance in cardiovascular, metabolic, hepatic, and renal disorders. Front Pharmacol. 9, 557. https://doi.org/10.3389/fphar.2018.00557
  18. Qi L., Zhong F., Liu N. et al., 2022. Characterization of the anti-AChE potential and alka-loids in Rhizoma Coptidis from different Coptis species combined with spectrum-effect relationship and molecular docking. Front Plant Sci. 13, 1020309. https://doi.org/10.3389/fpls.2022.1020309
  19. Rad E.S., Eidi A., Minai-Tehrani D. et al., 2022. Neuroprotective effect of root extracts of Berberis Vulgaris (Barberry) on oxidative stress on SH-SY5Y Cells. J. Pharma-copuncture. 25(3), 216–223. https://doi.org/10.3831/KPI.2022.25.3
  20. Raghuvanshi R., Jamwal A., Nandi U. et al., 2023. Multitargeted C9-substituted ester and ether derivatives of berberrubine for Alzheimer’s disease: design, synthesis, biological evaluation, metabolic stability, and pharmacokinetics. Drug Dev. Res. 84(1), 121–140. https://doi.org/10.1002/ddr.22017
  21. Rajasekhar K., Samanta S., Bagoband V. et al., 2020. Antioxidant berberine-derivative inhibits multifaceted amyloid toxicity. iScience 23(4), 101005. https://doi.org/10.1016/j.isci.2020.101005
  22. Scheltens P., De Strooper B., Kivipelto M. et al., 2021. Alzheimer’s disease. Lancet 397(10284), 1577–1590. https://doi.org/10.1016/S0140-6736(20)32205-4
  23. Singh A.K., Singh S.K., Nandi M.K. et al., 2019. Berberine: a plant-derived alkaloid with therapeutic potential to combat Alzheimer’s disease. Cent. Nerv. Syst. Agents Med. Chem. 19(3), 154–170. https://doi.org/10.2174/1871524919666190820160053
  24. Singh A.K., Singh S.S., Rathore A.S. et al., 2021. Lipid-coated MCM-41 mesoporous silica nanoparticles loaded with berberine improved inhibition of acetylcholine esterase and amyloid formation. ACS Biomater. Sci. Eng. 7(8), 3737–3753. https://doi.org/10.1021/acsbiomaterials.1c00514
  25. Sobolova K., Hrabinova M., Hepnarova V. et al., 2020. Discovery of novel berberine deriva-tives with balanced cholinesterase and prolyl oligopeptidase inhibition profile. Eur. J. Med. Chem. 203, 112593. https://doi.org/10.1016/j.ejmech.2020.112593
  26. Sun C., Gao X., Sha S. et al., 2025. Berberine alleviates Alzheimer’s disease by activating autophagy and inhibiting ferroptosis through the JNK-p38MAPK signaling pathway. Int Immunopharmacol. 155, 114550. https://doi.org/10.1016/j.intimp.2025.114550
  27. Tajiri M., Yamada R., Hotsumi M. et al., 2021. The total synthesis of berberine and selected analogues, and their evaluation as amyloid beta aggregation inhibitors. Eur. J. Med. Chem. 215, 113289. https://doi.org/10.1016/j.ejmech.2021.113289
  28. Tan J.L., Xu Y.L., Fei Y.Q. et al., 2022. Simultaneous screening, identification, quantitation, and activity evaluation of six acetylcholinesterase (AChE) inhibitors in Coptidis Rhi-zoma by online UPLC-DAD coupled with AChE biochemical detection. J. Pharm. Bio-med. Anal. 219, 114897. https://doi.org/10.1016/j.jpba.2022.114897
  29. Tuzimski T., Petruczynik A. 2021. Application of HPLC-DAD for in vitro investigation of acetylcholinesterase inhibition activity of selected isoquinoline alkaloids from Sanguinaria canadensis extracts. Molecules 26(1), 230. https://doi.org/10.3390/molecules26010230
  30. Wang J., Jin D., 2019. Berberine alleviates amyloid beta-induced injury in Alzheimer’s dis-ease by miR-107/ZNF217. RSC Adv. 9(43), 25232–25239. https://doi.org/10.1039/c9ra04500g
  31. Wang K., Yin J., Chen J. et al., 2024. Inhibition of inflammation by berberine: molecular mechanism and network pharmacology analysis. Phytomedicine 128, 155258. https://doi.org/10.1016/j.phymed.2023.155258
  32. Wang L., Zhou B.Q., Li Y.H. et al., 2023. Lactoferrin modification of berberine nanolipo-somes enhances the neuroprotective effects in a mouse model of Alzheimer’s disease. Neural Regen Res. 18(1), 226–232. https://doi.org/10.4103/1673-5374.344841
  33. Wang S., Ma Y., Huang Y. et al., 2022. Potential bioactive compounds and mechanisms of Fibraurea recisa Pierre for the treatment of Alzheimer’s disease analyzed by net-work pharmacology and molecular docking prediction. Front Aging Neurosci. 14, 1052249. https://doi.org/10.3389/fnagi.2022.1052249
  34. Wong L.R., Tan E.A., Lim M.E.J. et al., 2021. Functional effects of berberine in modulating mitochondrial dysfunction and inflammatory response in the respective amyloidogenic cells and activated microglial cells – in vitro models simulating Alzheimer’s disease pa-thology. Life Sci., 282, 119824. https://doi.org/10.1016/j.lfs.2021.119824
  35. World Health Organization, 2019. International classification of diseases: 10th revision. Chapter V. Mental and behavioral disorders. World Health Organization, Geneva, 150–200.
  36. Wu Y., Chen Q., Wen B. et al., 2021. Berberine reduces Aβ42 deposition and tau hyperphos-phorylation via ameliorating endoplasmic reticulum stress. Front Pharmacol. 12, 640758. https://doi.org/10.3389/fphar.2021.640758
  37. Xu J., Wu W., Zhang H. et al., 2018. Berberine alleviates amyloid β25-35-induced inflammato-ry response in human neuroblastoma cells by inhibiting proinflammatory factors. Exp. Ther. Med. 16(6), 4865–4872. https://doi.org/10.3892/etm.2018.6749
  38. Yang M., Wang J. 2022. Berberine ameliorates cognitive disorder via GSK3β/PGC-1α signal-ing in APP/PS1 Mice. J. Nutr. Sci. Vitaminol. (Tokyo) 68(3), 228–235. https://doi.org/10.3177/jnsv.68.228
  39. Zhang N., Gao Y., Yu S. et al., 2020. Berberine attenuates Aβ42-induced neuronal damage through regulating circHDAC9/miR-142-5p axis in human neuronal cells. Life Sci. 252, 117637. https://doi.org/10.1016/j.lfs.2020.117637
  40. Zhang R.L., Lei B.X., Wu G.Y. et al., 2023. Protective effects of berberine against β-amyloid-induced neurotoxicity in HT22 cells via the Nrf2/HO-1 pathway. Bioorg. Chem. 133, 106210. https://doi.org/10.1016/j.bioorg.2022.106210
  41. Zhao C., Su P., Lv C. et al., 2019. Berberine alleviates amyloid β-induced mitochondrial dysfunction and synaptic loss. Oxid. Med. Cell Longev. 7593608. https://doi.org/10.1155/2019/7593608

Downloads

Download data is not yet available.

Podobne artykuły

Możesz również Rozpocznij zaawansowane wyszukiwanie podobieństw dla tego artykułu.