Skip to main navigation menu Skip to main content Skip to site footer

Vol. 33 No. 3 (2015)

Articles

Comparative cytogenetic mapping of the HSPB1 locus in the genomes of Bovidae

Submitted: July 30, 2019
Published: 2015-11-26

Abstract

The HSPB1 protein, from the family of small heat shock proteins (sHsps), plays a functional role in the regulation of many intracellular processes and protection from environmental stress factors. Mutations of the HSPB1 gene are the reason for neuronal cells dysfunction associated with myopathies, motor neuropathies and neurodegenerative disorders, including prion diseases. Precise, chromosomal localization of this gene may contribute to the identification of new QTL correlated with resistance/susceptibility to prion diseases in Bovidae. As a result of comparative mapping performed by FISH technique with species-specific and heterologous molecular probes the location of HSPB1 gene was assigned to 25q22 cattle and goat genome region as well as sheep 24q22. Physical localization of the HSPB1 gene in the genomes of the studied species assigned its attachment to the linkage and syntenic groups of genes, which is essential for the expectation of the genetic selection effects

References

Acunzo J., Katsogiannou M., Rocchi P., 2012. Small heat proteins HSP27 (HspB1), αβ-crystallin (HspB5) and HSP22 (HspB8) as regulators of cell death. Int. J. Biochem. Cell B. 44, 1622–1631.

Arrigo A.P., 2012. Pathology-dependent effects linked to small heat shock proteins expression: an update. Scientifica, ID 185641, doi: org/10.6064/2012/185641.

Arrigo A.P., 2013. Human small heat shock proteins: Protein interactomes of homo- and heterooligomeric complexes: An update. FEBS Lett. 587, 1959–1969.

Bae S.E., Jung S, Kim H.Y., Son H.S., 2012. Correlation analysis for the incubation period of prion disease. Prion 6, 276–281.

Boncoraglio A., Minoia M., Carr S., 2012. The family of mammalian small heat shock proteins (HSPBs): Implications in protein deposit diseases and motor neuropathies. Int. J. Biochem. Cell Biol. 44, 1657–1669.

Brown C.A., Schmidt C., Poulter M., Hummerich H., Klöhn P.C., Jat P., Mead S., Collinge J., Lloyd S.E., 2014. In vitro screen of prion disease susceptibility genes using the scrapie cell assay. Hum. Mol. Genet. 2, 5102–5108.

Brownell S.E., Becker R.A., Steinman L., 2012. The protective and therapeutic function of small heat shock proteins in neurological diseases. Front. Immunol. 3, 74, doi: 10.3389/ fimmu.2012.00074.

Chowdhary B.P., Fronicke L., Gustavsson I., Scherthan H., 1996. Comparative analysis of the cattle and human genomes: detection of ZOO-FISH and gene mapping-based chromosomal homologies. Mamm. Genome 7, 297–302.

Danielak-Czech B., Kozubska-Sobocińska A., Bąk A., 2014a. FISH-based comparative mapping of the Hsp27 gene on chromosomes of the domestic Bovids. Chromosome Res. 22, 414–414.

Danielak-Czech B., Kozubska-Sobocińska A., Kruczek K., 2014 b. Chromosomal assignment of the small heat protein genes in the sheep genome. Chromosome Res. 22, 412–413.

Darlymple B.P., Kirkness E.F., Nefedov M., McWillam S., Ratnakumar A., Barris W., Zhao S., Shetty J., Maddox J.F., O’Grady M., Nicholas F., Crawford A.M., Smith T., de Jong P.J., McEwan J., Oddy V.H., Cockett N.E., International Sheep Genomics Consortium, 2007. Using comparative genomics to reorder the human genome sequence into a virtual sheep genome. Genome Biol. 8, R152, doi: 10.1186/gb-2007-8-7-r152.

De Lorenzi L., Molteni L., Parma P., 2010. FISH mapping in cattle (Bos taurus L.) is not yet of fashion. J. Appl. Genet. 51, 497–499.

Di Berardino D., Di Meo G.P., Gallagher D.S., Hayes H., Iannuzzi L., 2001. International system for chromosome nomenclature of domestic bovids ISCNDB 2000. Cytogenet. Cell Genet. 92, 283–299.

Everts-van der Wind A., Kata S.R., Band M.R., Rebeitz M., Larkin D.M., Everts R.E., Green C.A., Liu L., Natarajan S., Goldammer T., Lee J.H., McKay S., Womack J.E., Lewin H.A., 2004. A 1463 gene cattle-human comparative map with anchor points defined by human genome sequence coordinates. Genome Res. 14, 1424–1437.

Goldammer T., Di Meo G.P., Lühken G., Drögemüller C., Wu C.H., Kijas J., Dalrymple B.P., Nicholas F.W., Maddox J.F., Iannuzzi L., Cockett N.E., 2009. Molecular cytogenetics and gene mapping in sheep (Ovis aries, 2n = 54). Cytogenet. Genome Res. 126, 63–76.

Hernandez-Sanchez J., Waddington D., Wiener P., Haley C.S., Williams J.L., 2002. Genome-wide search for markers associated with bovine spongiform encephalopathy. Mamm. Genome 13, 164–168.

Hu Z.L., Park C.A., Wu X.L., Reccy J.M., 2013. Animal QTLdb: an improved database tool for livestock animal QTL/association data dissemination in the post-genome era. Nucleic Acids Res. 41, 871–879, doi: 10.1093/nar/gks1150.

Iannuzzi L., Di Berardino D., 2008. Tools of the trade: diagnostics and research in domestic animal cytogenetics. J. Appl. Genet. 49, 357–366.

Iannuzzi L., King W.A., Di Berardino D., 2009. Chromosome evolution in domestic bovids as revealed by chromosome banding and FISH-mapping techniques. Cytogenet. Genome Res. 126, 49–62.

Lewin H., Larkin D.M., Pontius J., O’Brien S.J., 2009. Every genome sequence needs a good map.
Genome Res. 19, 1925–1928.

Moreno C.R., Cosseddu G.M., Schibler L., Roig A., Moazami-Goudarzi K., Andreoletti O., Eychenne F., Lajous D., Schelcher F., Cribiu E.P., Laurent P., Vaiman D., Elsen J.M., 2008. Identification of new quantitative trait loci (other than the PRNP gene) modulating the scrapie incubation period in sheep. Genetics 179, 723–726.

Moreno C.R., Moazami-Goudarzi K., Briand S., Robert-Granié C., Weisbecker J.L., Laurent P., Cribiu E.P., Haley C.S., Andreoletti O., Bishop S.C., Pong-Wong R., 2010. Mapping of quantitative trait loci affecting classical scrapie incubation time in a population comprising several generations of scrapie-infected sheep. J. Gen. Virol. 91, 575–579.

Sawiris G.P., Becker K.G., Elliott E.J., Moulden R., Rohwer R.G., 2007. Molecular analysis of bovine spongiform encephalopathy infection by cDNA arrays. J. Gen. Virol. 88, 1356–1362.

Schibler L., Di Meo G.P., Iannuzzi L., 2009. Molecular cytogenetics and comparative mapping in goats (Capra hircus, 2n = 60). Cytogenet. Genome Res. 126, 77–85.

Serrano C., Bolea R., Lyahyai J., Filali H., Varona L., Marcos-Carcavilla A., Acin C., Calvo J.H., Serrano M., Badiola J.J., 2011. Changes in HSP gene and protein expression in natural scrapie with brain damage. Vet. Res. 42, 13, doi: 10.1186/1297-9716-42-13.

Tortosa R., Vidal E., Costa C., Alamillo E., Torres J.M., Ferrer I., Pumarola M., 2008. Stress response in the central nervous system of a transgenic mouse model of bovine spongiform encephalopathy. Vet. J. 178, 126–129.

Vidal E., Acín C., Foradada L., Monzόn M., Márquez M., Monleon E., Pumarola M., Badiola J.J., Bolea R., 2009. Immunohistochemical characterization of classical scrapie neuropathology in sheep. J. Comp. Pathol. 141, 135–146.

Wettstein G., Bellaye P.S., Micheau O., Bonniaud P., 2012. Small heat shock proteins and the cytoskeleton: An essential interplay for cell integrity? Int. J. Biochem. Cell B. 44(10), 1680–1686.

Zhang C., de Koning D.J., Hernandez–Sanchez J., Haley C.S., Williams J.L., Wiener P., 2004. Mapping of multiple quantitative trait loci affecting bovine spongiform encephalopathy. Genetics 167, 1863–1872.

Downloads

Download data is not yet available.

Most read articles by the same author(s)

<< < 1 2 3 4 5 > >> 

Similar Articles

1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.