Skip to main navigation menu Skip to main content Skip to site footer

Vol. 30 No. 2 (2012)

Articles

Effect of water temperature and time since of administration of ascorbic acid (AA) on its contents in selected tissues of the common carp Cyprinus carpio (L.)

Submitted: March 12, 2021
Published: 2012-06-30

Abstract

The effect of water temperature and time after administration of ascorbic acid (AA) on its content in selected tissues of carp kept in different thermal conditions (15oC and 25oC) was
determined. The concentration of AA in the kidney, liver and muscle of common carp before the experiment (control) and on 1, 3, 7 and 14 days after per os its administration was determined. The greatest content of AA was found in the kidney, while being smaller in the liver and the smallest in muscles, the average being 14.1 µg kg-1, 12.2 µg kg-1

and 8.3 µg kg-1, respectively. On the first day after administration of AA its quantity in the kidney was 2.5 times higher and in the liver, twice as high as in the control sample. During the experiment, the AA content significantly decreased and after 14 days after dosing it fell to the value defined in the control sample. The water temperature did not significantly affect the decline of AA in all tissues, but a two-way analysis of variance revealed significant effects of temperature on the changes of AA content only in the liver.

References

Ai Q., Mai K., Tan B., Xu W., Zhang W., Ma H., Liufu Z., 2006. Effects of dietary vitamin C on survival, growth, and immunity of large yellow croaker, Pseudosciaena crocea. Aquaculture
261, 327–336.
Ai Q., Mai K., Zhang Ch., Xu W., Duan Q., Tan B., Liufu Z., 2004. Effects of dietary vitamin C on growth and immune response of Japanese seabass, Lateolabrax japonicas Aquaculture 242,
489–500.
Blom J.H., Dąbrowski K., 1996. Ascorbic acid metabolism in fish: is there a maternal effect on the progeny? Aquaculture 147, 215–224.
Dabrowski K., 1990. Absorption of ascorbic acid and ascorbic sulfate and ascorbate metabolism in common carp (Cyprinus carpio L.). J. Comp. Physiol. 160B, 549–561.
Dabrowski K., 1994. Primitive Actinopterigian fishes are capable of ascorbic acid synthesis. Experientia 50, 745–748.
Dabrowski K., 2001. Ascorbic acid in aquatic organisms. CRC Press, pp 288.
Eo J., Lee K.J., 2008. Effect of dietary ascorbic acid on growth and non-specific immune responses of tiger puffer, Takifugu rubripes. Fish & Shellfish Immunology 25, 611–616.
Fracalossi D.M., Allen M.E., Yuyama L.K., Oftedal O.T., 2001. Ascorbic acid biosynthesis in Amazonian fishes. Aquaculture 192, 321–332.
Henrique M.M.F., Gomes E.F., Gouillou-Coustans M.F., Oliva-Teles B.A., Davies S.J., 1998.
Influence of supplementation of practical diets with vitamin C on growth and response to hypoxic stress of seabream, Sparus aurata. Aquaculture 161, 415–26.
Ikeda, S., Sato, M., 1964. Biochemical studies on L-ascorbic acid in aquatic animals: III. Biosynthesis of L-ascorbic acid by carp. Bull. Jpn. Soc. Sci. Fish. 30, 365–374.
Kapl D., Weiser H., Rambeck W.A., 1994. The influence of vitamin C on cadmium-retention in pigs. Revue. Med. Vet. 145, 291–293.
Kitamura S., Suwa T., Ohara S. and Nakamura K., 1965. Studies of vitamin requirements of rainbow trout, Salmo gairdneri. I. On the ascorbic acid. Bull. Jpn. Soc. Sci. Fish., 33, 1120–1125.
Kubiński T., 1993. Rozpoznawanie niedoborów witaminy C. 20. Kraj. Konf. Nauk. Pracowni Biochem. ZHW. Inst. Wet., Puławy, 36–54.
Kumari J., Sahoo P.K., 2005. High dietary vitamin C affects growth, non-specific immune responses and disease resistance in Asian catfish, Clarias batrachus. Molec. Cell. Biochem.
280, 25–33.
Lechowski J., Nagórna-Stasiak B. 1995. Witamina C u drobiu domowego. Med. Wet. 51, 4, 216–218.
Lewin S., 1976. Vitamin C: its molecular biology and medical potential. Acad. Press, London – New York – San Francisco, 75–101.
McLaren B.A., Keller E., O'donnell D.J., Elvehjem C.A., 1947. The nutrition of rainbow trout. I. Studies of vitamin requirements. Arch. Biochem. Biophys. 15, 169–178.
Moreau R. Dabrowski K., 1996. The primary localization of ascorbate and its synthesis in the kidneys of acipenserid (Chondrostei) and teleost (Teleostei) fishes. J. Comp. Physiol. B. 166,
178–183.
Moreau R., Dabrowski K., 1998a. Body pool and synthesis of ascorbic acid in adult sea lamprey (Petromyzon marinus): An agnathan fish with gulonolactone oxidase activity. Proc. Natl.
Acad. Sci. USA, 95, 10279–10282.
Moreau R., Dabrowski K., 1998b. Fish acquired ascorbic acid synthesis prior to terrestrial vertebrate emergence. Free Radical Biol. Med. 25, 989–990.
Omaye S.T., Turnbull I.D., Sauberlich H.E., 1979. Selected methods for the determination of ascorbic acid in animal cell, tissue and fluids. In: Methods in Enzymology, eds. Mc Cormick
D.B. and Wright L.D., pp. 1–11. Academic Press, New York, NY.
Ortuno J., Estabana M.A., Meseguer J., 1999. Effect of high dietary intake of vitamin C on nonspecific immune response of gilthead seabream (Sparus aurata L.). Fish Shellfish Immunol.
9, 429–443.
Pardue S., Thaxton J., 1986. Ascorbic acid in poultry.: A review. Wld's Poult. Sci. J. 42, 107. SAS Institut, 2001.
Sato M., Yoshinaka R., Yamamoto Y., Ikeda S., 1978. Nonessentiality of ascorbic acid in the diet of carp. Bull. Jpn. Soc. Sci. Fish. 44, 10, 1151–1156.
Soliman, A.K., Jauncey, K., Roberts, R.J., 1985. Qualitative and quantitative identification of L-gulonolactone oxidase activity in some teleosts. Aquacult. Fish. Manage. 1, 249–256.
Sterkowicz S., 1989. 60 rocznica witaminy C. Wiad. Lek. 7, 484-487.
Svirbely J.L., Szent-Györgyi A., 1932. Hexuronic acid as the antiscorbutic factor. Nature (London), 129, 576.
Thed S.T., Erickson M.C., 1992. Absorption of dissolved ascorbate by live channel catfish (Ictulurus punctatus). J. Food Process. Preserv. 16, 185–192.
Wang X., Kim K.W., Bai S. C., Huh M.-D., Cho B.-Y., 2003. Effects of the different levels of dietary vitamin C on growth and tissue ascorbic acid changes in parrot fish (Oplegnathus fasciatus).
Aquaculture 215, 203–211.
Wartanowicz M., Ziemlański S., 1992. Rola witaminy C (kwasu askorbinowego) w fizjologicznych i patologicznych procesach ustroju czlowieka. Żyw. Czł. Met., 19, 3, 193–205.
Wilson R.P., 1973. Absence of ascorbic acid synthesis in channel catfish (Ictalurus punctatus) and blue catfish (Ictalurus furcatus). Comp. Biochem. Physiol. B46, 635–638.
Wolf G., 1993. Uptake of ascorbic acid by human neutrophils. Nutr. Rev. 51, 11, 337–338.
Yamamoto Y., Sato M., Ikeda S., 1978. Existence of L-gulonolactone oxidase in some teleosts. Bull. Jpn. Soc. Sci. Fish. 44, 775–779.

Downloads

Download data is not yet available.

Most read articles by the same author(s)

Similar Articles

<< < 6 7 8 9 10 11 12 13 > >> 

You may also start an advanced similarity search for this article.