Agronomy Science, przyrodniczy lublin, czasopisma up, czasopisma uniwersytet przyrodniczy lublin
Przejdź do głównego menu Przejdź do sekcji głównej Przejdź do stopki

Tom 77 Nr 3 (2022)

Artykuły

Zarządzanie jakością nasion zbóż kondycjonowanych efektywnymi mikroorganizmami (EM) i światłem czerwonym (RL)

DOI: https://doi.org/10.24326/as.2022.3.7
Przesłane: 7 czerwca 2022
Opublikowane: 28-10-2022

Abstrakt

The study pertained to environmentally-friendly methods in the cultivation of cereal, and aimed to manage the quality of rye and triticale seeds and determine the impact of seed conditioning using effective microorganisms (EM), red light (RL), and a combination of the two (RL × EM) on the yield of grain and straw. Moreover, the seeds were sown into soil with and without EM conditioning, designated as 0 and PEM. The yield fluctuations depended mostly on the studied rye and triticale cultivars. The best effects we observed in soil without EM conditioning for Dańkowskie Złote rye and Moderato triticale. The increase in grain and straw yields was, respectively: 26% (RL), 31% (RL × EM), 40% (EM), and 17% (RL × EM), 23% (RL), 32% (EM) – Dańkowskie Złote, 27% (RL × EM), 44% (EM), 46% (RL), and 17% (RL × EM), 51% (EM), 78% (RL) – Moderato. In turn, seeds exposed to the experimental treatment and sown into soil containing EM produced reduced yields in both of the above cultivars. It is noteworthy that the conditioning methods employed in the field experiment can facilitate increased yields but most importantly contribute to the resilience of agrosystems and can therefore have environmental benefits. It is noteworthy that the conditioning methods employed in the field experiment can facilitate increased yields but most importantly contribute to the resilience of agrosystems and can therefore have environmental benefits.

Bibliografia

  1. Abatenh E., Gizaw B., Tsegaye Z., Wassie M., 2017. The Role of microorganisms in ioremediation – a review. Open J. Environ. Biol. 2, 30–46. DOI: https://doi.org/10.17352/ojeb.000007
  2. Abdelhafer M., Abu-Elsaoud A.M., Tuleukhanov S.T., Abdel-Kader D.Z., 2008. Effect of infra-red laser on wheat (Triticum aestivum) germination. Int. J. Agric. Res. 3, 433–438. https://doi.org/10.3923/IJAR.2008.433.438 DOI: https://doi.org/10.3923/ijar.2008.433.438
  3. Bai Z., Caspari T., Gonzalez M.R., Batjes N.H., Mäder P., Bünemann E.K., De Goede R., Brussaard L., Xu M., Ferreira C.S.S., Rentam E., Fan H., Mihelič R., Glavan M., Tóth Z., 2018. Effects of agricultural management practices on soil quality: A review of long-term experiments for Europe and China. Agric. Ecosyst. Environ. 265, 1–7. https://doi.org/10.1016/J.AGEE.2018.05.028 DOI: https://doi.org/10.1016/j.agee.2018.05.028
  4. Boelt B., Shrestha S., Salimi Z., Jꬾrgensen J.R., Nicolaisen M., Carstensen J.M., 2018. Multispectral imaging – a new tool in seed quality assessment?. Seed Sci. Res. 28(3), 222–228. https://doi.org/10.1017/S0960258518000235 DOI: https://doi.org/10.1017/S0960258518000235
  5. Borowy A., Kapłan M., Krawiec M., 2018. Impact of effective microorganisms on weed infestation and yield of peppermint cultivated on muck-peat soil. Acta Agrobot. 71(4), 1755. https://doi.org/10.5586/aa.1755 DOI: https://doi.org/10.5586/aa.1755
  6. COBORU, 2022. Centralny Ośrodek Badania Odmian Roślin Uprawnych [Research Centre for Cultivar Testing], https://coboru.gov.pl [date of access: 31.05.2022].
  7. Cóndor_Golec A.F., Pérez G., Lokare Ch., 2007. Effective microorganisms: myt hor reality? Microorganismos eficaces: mito o realidad?. Rev. Peru. Biol. 14(2), 315–319. DOI: https://doi.org/10.15381/rpb.v14i2.1837
  8. Ćwintal M., Dziwulska-Hunek A., 2013. Effect of electromagnetic stimulation of alfalfa seeds. Int. Agrophys. 27, 391–401. https://doi.org/10.2478/intag-2013-0009 DOI: https://doi.org/10.2478/intag-2013-0009
  9. Drążkiewicz K., Janiak W., Najewski A., Piecuch K., Skrzypek A., Szarzyńska J., 2019. Lista opisowa odmian roślin rolniczych 2019 [Descriptive list of agricultural plant cultivars 2019]. Centralny Ośrodek Badania Odmian Roślin Uprawnych, Słupia Wielka [in Polish] https://coboru.gov.pl/Publikacje_COBORU/Listy_opisowe/LOORR%20-%20zbozowe%202019.pdf [date of access: 30.04.2019].
  10. Drozd D., Szajsner H., 2001. Efekt biostymulacji laserowej u roślin zbożowych. Biul. Inst. Hod. Aklim. Rośl. 218/219, 235–239.
  11. Dziwulska-Hunek, A., Szymanek M., Stadnik J., 2020. Impact of pre-sowing red light treatment of sweet corn seeds on the quality and quantity of yield. Agriculture 10(165), 1–10. https://doi.org/10.3390/agriculture10050165 DOI: https://doi.org/10.3390/agriculture10050165
  12. Gajewski P., 2016. Influence of the EM-A preparation on the structure properties in various mineral soils. Soil Sci. Annu. 67(4), 179–184. https://doi.org/10.1515/ssa-2016-0022 DOI: https://doi.org/10.1515/ssa-2016-0022
  13. Gawęda D., Haliniarz M., Woźniak A., Harasim E., 2018. Yield, seed quality and nodule formation of soybean under application of effective microorganisms. Acta Agrophys. 25, 35–43. https://doi.org/https://doi.org/10.31545/aagr0003 DOI: https://doi.org/10.31545/aagr0003
  14. Ghersa C.M., Martinez-Ghersa M.A., Casal J.J., Kaufman M., Roush M.L., Deregibus V.A., 1994. Effect of light on winter wheat (Triticum aestivum) and Italian Ryegrass (Lolium multiflorum) competition. Weed Technol. 8, 37–45. DOI: https://doi.org/10.1017/S0890037X00039178
  15. Gładyszewska B., 2006. Pre-sowing laser biostimulation of cereal grains. Tech. Sci. 9, 33–38.
  16. Gotto E., 2003. Effects of light quality on growth of crop plants under artificial lighting. Environ. Control Biol. 41(2), 121–132. DOI: https://doi.org/10.2525/ecb1963.41.121
  17. Govindaraj M., Masilamani P., Alex Albert V., Bhaskaran M., 2017. Effect of physical seed treatment on yield and quality of crops: A review. Agric. Rev. 38(1), 1–14. https://doi.org/10.18805/AG.V0IOF.7304 DOI: https://doi.org/10.18805/ag.v0iOF.7304
  18. Hasan M., Hanafiah M.M., Taha Z.A., Alhilfy I.H.H., Said M.N.M., 2020. Laser irradiation effects at different wavelengths on phenology and yield components of pretreated maize seed. Appl. Sci. 10, 1189, 1–12. https://doi.org/10.3390/app10031189 DOI: https://doi.org/10.3390/app10031189
  19. Hernández A.C., Dominguez P.A., Cruz O.A., Ivanov R., Carballo C.A., Zepeda B.R., 2010. Laser in agriculture. Int. Agrophys. 24, 407–422.
  20. Hu Ch., Qi Y., 2013. Long-term effective microorganisms application promote growth and increase yields and nutrition of wheat in China. Eur. J. Agron. 46, 63–67. https://doi.org/10.1016/j.eja.2012.12.003 DOI: https://doi.org/10.1016/j.eja.2012.12.003
  21. Jaroszewska A., Sobolewska M., Podsiadło C., Stankowski S., 2019. The effect of fertilization and effective microorganisms on buckwheat and millet. Acta Agrophys. 26(3), 15–28. https://doi.org/10.31545/aagr/114016 DOI: https://doi.org/10.31545/aagr/114016
  22. Javaid A., Bajwa R., 2011. Field evaluation of effective microorganisms (EM) application for growth nodulation and nutrition of mung bean. Turk. J. Agric. For. 35, 443–452. https://doi.org/10.3906/tar-1001-599 DOI: https://doi.org/10.3906/tar-1001-599
  23. Javaid A., Shah M.B.M., 2010. Growth and yield response of wheat to EM (effective microorganisms) and parthenium green manure. Afr. J. Biotechnol. 9(23), 3373–3381.
  24. Joshi H., Somduttand Choudhary P., Mundra S.L., 2019. Role of effective microorganisms (EM) in sustainable agriculture. Int. J. Curr. Microbiol. App. Sci. 8(3), 172–181. https://doi.org/10.20546/ijcmas.2019.803.024 DOI: https://doi.org/10.20546/ijcmas.2019.803.024
  25. Jyoti, Malik C.P., 2013. Seed deterioration: a review. Int. J. Life Sci. Biotechnol. Pharma Res. 2(3), 374–385.
  26. Kataria S., Baghel L., Guruprasad K.N., 2017. Pre-treatment of seeds with static magnetic field improves germination and early growth characteristics under salt stress in maize and soybean. Biocatal. Agric. Biotechnol. 10, 83–90. https://doi.org/10.1016/j.bcab.2017.02.010 DOI: https://doi.org/10.1016/j.bcab.2017.02.010
  27. Khare E., Arora N.K., 2014. Effects of soil environment on field efficacy of microbial inoculants. In Plant Microbes Symbiosis: Applied Facets, Springer, New Delhi, 353–381. https://doi.org/10.1007/978-81-322-2068-8_19 DOI: https://doi.org/10.1007/978-81-322-2068-8_19
  28. Mayer J., Sceid S., Widmer F., Fließbach A., Oberholzer H.R., 2010. How effective are ‘Efective Microorganisms (EM)’? Results from a field study in temperate climate. Appl. Soil Ecol. 46, 230–239. https://doi.org/10.1016/j.apsoil.2010.08.007 DOI: https://doi.org/10.1016/j.apsoil.2010.08.007
  29. Michtchenko A., Hernández M., 2010 Photobiostimulation of germination and early growth of wheat seeds (Triticum aestivum L) by a 980 nm semiconductor laser. Rev. Cub. Fís. 27(2B), 271–274.
  30. Matwijczuk A., Kornarzyński K., Pietruszewski S., 2012. Effect of magnetic field on seed germination and seedling growth of sunflower. Int. Agrophys. 26(3), 271–278. https://doi.org/10.2478/v10247-012-0039-1 DOI: https://doi.org/10.2478/v10247-012-0039-1
  31. Muszyński S., Gagoś M., Pietruszewski S., 2009. Short-term pre-germination exposure to ELF magnetic field does not influence seedling growth in Durum Wheat (Triticum durum). Pol. J. Environ. Stud. 18, 1065–1072.
  32. Pietruszewski S., Muszyński S., Dziwulska A., 2007. Electromagnetic fields and electromagnetic radiation as non-invasive external simulations for seeds (selected methods and responses). Int. Agrophys. 21, 95–100.
  33. Piskier T., 2006. Reaction of spring wheat to the application of bio-stimulators and soil absorbents. J. Re. Appl. Agric. Engin. 51(2), 136–138.
  34. Qiu Z., Yuan M., He Y., Li Y., Zhang L. 2017. Physiological and transcriptome analysis of He-Ne laser pretreated wheat seedlings in response to drought stress. Sci. Rep. 7, 1–12. https://doi.org/10.1038/s41598-017-06518-z DOI: https://doi.org/10.1038/s41598-017-06518-z
  35. Radkowski A., Radkowska I., 2018. Influence of effective microorganisms on the dry matter yield and chemical composition of meadow vegetation. J. Elem. 23(2), 509–520. https://doi.org/10.5601/jelem.2017.22.3.1441 DOI: https://doi.org/10.5601/jelem.2017.22.3.1441
  36. Rajjou L., Lovigny Y., Job C., Belghazi M., Groot S., Job D., 2006. Seed quality and germination. In: S. Adkins, S. Ashmore, S. Navie (eds.), Seeds: biology, development and ecology. CAB International, 324–331. DOI: https://doi.org/10.1079/9781845931971.0324
  37. Rao N.K., Dulloo M.E., Engels J.M.M., 2017. A review of factors that influence the production of quality seed for long-term conservation in genebanks. Genet. Resour. Crop Evol. 64, 1061–1074. https://doi.org/10.1007/s10722-016-0425-9 DOI: https://doi.org/10.1007/s10722-016-0425-9
  38. Sangakkara R., Wijesinghe D., Attanayake K.B., 2014. Soil quality and crop yields as affected by microbial inoculants in nature farming. In: G. Rahmann, U. Aksoy (eds.), Proceedings of the 4th ISOFAR Scientific Conference. ‘Building Organic Bridges’, at the Organic World Congress 2014, 13–15 OCt., Istanbul, Turkey, 987–990.
  39. Singh J., 2018. Role of earthworm in sustainable agriculture. In: C.M. Galanakis (ed.), Sustainable food systems from agriculture to industry. Improving production and processing, Academic Press, London, 83–122. https://doi.org/10.1016/B978-0-12-811935-8.00003-2 DOI: https://doi.org/10.1016/B978-0-12-811935-8.00003-2
  40. Seran T.H., Suthamathy N., 2013. Effect of combined application of cattle manure and EM on the yield and yield components of groundnut (Arachis hypogaea L.). Bangladesh J. Agril. Res. 38(1), 1–9. DOI: https://doi.org/10.3329/bjar.v38i1.15184
  41. Sulkiewicz M., Ciereszko I., 2016. Fluorescencja chlorofilu a – historia odkrycia i zastosowanie w badaniach roślin [Chlorophyll a fluorescence – history of discovery and pratical application in environmental plant science]. KOSMOS 65(1), 103–115.
  42. Szymanek M., Dziwulska-Hunek A., Zarajczyk J., Michałek S., Tanaś W., 2020. The influence of red light (RL) and effective microorganism (EM) application on soil properties, yield, and quality in wheat cultivation. Agronomy 10, 1201. https://doi.org/10.3390/agronomy10081201 DOI: https://doi.org/10.3390/agronomy10081201
  43. Tang C.Y., Criddle C.S., Leckie J.O., 2007. Effect of flux (trans membrane pressure) and membranes properties on fouling and rejection of reverse osmosis and nano filtration membranes treating perfluorooctane sulfonate containing waste water. Environ. Sci. Technol. 41, 2008–2014. DOI: https://doi.org/10.1021/es062052f
  44. Tołoczko W., Trawczyńska A., Niewiadomski A., 2009. Zawartość związków próchnicznych w glebach nawożonych preparatem EM [Content of humic substances in soil fertilized with an EM preparation]. Rocz. Glebozn. 60(1), 97–101.
  45. Truchliński J., Wesołowski M., Koper R., Dziamba S., 2002. Influence of pre-sowing red light radiation on the content of antinutritional factors, mineral elements and basic nutritional component contents in triticale seeds. Int. Agrophys. 16, 227–230.
  46. Velten S., Leventon J., Jager N., Newig J., 2015. What is sustainable agriculture? A systematic review. Sustainability 7, 7833–7865. https://doi.org/10.3390/su7067833 DOI: https://doi.org/10.3390/su7067833
  47. Wezel A., Casagrande M., Celette F., Vian J.F., Ferrer A., Peigné J., 2014. Agroecological practices for sustainable agriculture. A review. Agron. Sustain. Dev. 34, 1–20. https://doi.org/10.1007/s13593-013-0180-7 DOI: https://doi.org/10.1007/s13593-013-0180-7
  48. Zarębski Z. W., Dziamba S., 1993. Sposób przedsiewnej obróbki ziarna i urządzenie do przedsiewnej obróbki ziarna [Method of and apparatus for pre-sowing treatment of grain]. Patent RP Nr P.299454.

Downloads

Download data is not yet available.

Podobne artykuły

<< < 12 13 14 15 16 17 18 19 20 21 > >> 

Możesz również Rozpocznij zaawansowane wyszukiwanie podobieństw dla tego artykułu.