Agronomy Science, przyrodniczy lublin, czasopisma up, czasopisma uniwersytet przyrodniczy lublin
Przejdź do głównego menu Przejdź do sekcji głównej Przejdź do stopki

Tom 78 Nr 2 (2023)

Artykuły

Wpływ nawozów zawierających wolne aminokwasy na plonowanie współczesnej oraz dawnych odmian pszenicy zwyczajnej w produkcji ekologicznej

DOI: https://doi.org/10.24326/as.2023.5072
Przesłane: 7 lutego 2023
Opublikowane: 26-09-2023

Abstrakt

Celem badań było określenie wpływu nawozów aminokwasowych na wielkość i strukturę plonu ziarna współcześnie uprawianej oraz starych odmian pszenicy zwyczajnej ozimej w produkcji ekologicznej. Ocenie poddano następujące odmiany pszenicy: RGT Kilimanjaro, Ostka Grodkowicka, Square Head Grodkowicka, Egipcjanka, Nadwiślanka i Blondynka. Warianty nawozowe obejmowały:  obiekt bez nawożenia dolistnego, Fertileader Tonic, Ecovigor AA, Fertileader Tonic + Ecovigor AA, Aminosol, Fertileader Tonic + Aminosol. Spośród ocenianych odmian pszenicy największym plonem ziarna odznaczała się współcześnie uprawiana odmiana RGT Kilimanjaro, która plonowała średnio na poziomie 7,27 t ha–1. Stare, regionalne odmiany pszenicy wykształcały plony ziarna od 36,3 do 50,3% mniejsze. W tej grupie odmian największym potencjałem plonowania odznaczała się Nadwiślanka, a najmniejszym Blondynka. Mniejsze plony ziarna starych odmian pszenicy były efektem słabszej krzewistości roślin, mniejszej ilości wykształconych ziaren w kłosie oraz masy 1000 ziaren w porównaniu z pszenicą współcześnie uprawianą. Aplikacja nawozów aminokwasowych powodowała przyrost plonu ziarna w zakresie od 2,4 do 7,2%. Istotną zwyżkę plonu stwierdzono po zastosowaniu preparatu Fertileader Tonic łącznie z nawozami Ecovigor AA oraz Aminosol.

Bibliografia

  1. Baqir H.A., Al.-Naqeeb M.A.S., 2019. Effect of some amino acids on tillering and yield of tree bread wheat cultivars. Iraqi J. Agric. Sci. 50, 20–30. DOI: https://doi.org/10.36103/ijas.v50iSpecial.173
  2. Bhaskar N., Benila T., Radha C., Lalitha R.G., 2008. Optimization of enzymatic hydrolysis of vis-ceral waste proteins of Catla (Catla catla) for preparing protein hydrolysate using a commercial protease. Bioresour. Technol. 99(2), 335–343. https://doi.org/10.1016/J.BIORTECH. DOI: https://doi.org/10.1016/j.biortech.2006.12.015
  3. 12.015
  4. Botta A., 2013. Enhancing plant tolerance to temperature stress with amino acids: an approach to their mode of action. Acta Hortic. 1009, 29–35. https://doi.org/10.17660/ ACTA-HORTIC.2013.1009.1 DOI: https://doi.org/10.17660/ActaHortic.2013.1009.1
  5. Calvo P., Nelson L., Kloepper J.W., 2014. Agricultural uses of plant biostimulants. Plant Soil 383, 3–41. https://doi.org/10.1007/s11104-014-2131-8 DOI: https://doi.org/10.1007/s11104-014-2131-8
  6. Colla G., Rouphael Y., Canaguier R., Svecova E., Cardarelli M., 2014. Biostimulant action of a plant-derived protein hydrolysate produced through enzymatic hydrolysis. Front. Plant Sci. 5, 448. https://doi.org/10.3389/fpls.2014.00448 DOI: https://doi.org/10.3389/fpls.2014.00448
  7. Drobek M., Frąc M., Cybulska J., 2019. Plant biostimulants: importance of the quality and yield of horticultural crops and the improvement of plant tolerance to abiotic stress – a review. Agrono-my 9, 335. https://doi.org/10.3390/agronomy10030433 DOI: https://doi.org/10.3390/agronomy9060335
  8. Dromantienė R., Pranckietienė I., Šidlauskas G., Pranckietis V., 2013. Changes in technological properties of common wheat (Triticum aestivum L.) grain as influenced by amino acid fertiliz-ers. Zemdirbyste 100(1), 57–62. https://doi.org/10.13080/Z-A.2013.100.008 DOI: https://doi.org/10.13080/z-a.2013.100.008
  9. Ertani A., Cavani L., Pizzeghello D., Brandellero E., Altissimo A., Ciavatta C., Nardi S., 2009. Biostimulant activities of two protein hydrolysates on the growth and nitrogen metabolism in maize seedlings. J. Plant Nutr. Soil Sci. 172, 237–244. https://doi.org/10.1002/JPLN.200800174 DOI: https://doi.org/10.1002/jpln.200800174
  10. Ertani A., Schiavon M., Muscolo A., Nardi S., 2013. Alfalfa plant-derived biostimulant stimulate short-term growth of salt stressed Zea mays L. plants. Plant Soil 364, 145–158. https://doi.org/10.1007/s11104-012-1335-z DOI: https://doi.org/10.1007/s11104-012-1335-z
  11. Friedman M., 1999. Chemistry, nutrition, and microbiology of D-amino acids. J. Agric. Food Chem. 47, 3457–3479. https://doi.org/10.1021/jf990080u DOI: https://doi.org/10.1021/jf990080u
  12. Haliniarz M., Gawęda D., Bujak K., Frant M., Kwiatkowski C., 2013. Yield of winter wheat de-pending on the tillage system and level of mineral fertilization. Acta Sci. Pol., Agricultura 12(4), 59–72.
  13. Hammad S.A.R., Ali O.A.M., 2014. Physiological and biochemical studies on drought tolerance of wheat plants by application of amino acids and yeast extract. Ann. Agric. Sci. 59, 133–145. https://doi.org/10.1016/J.AOAS.2014.06.018 DOI: https://doi.org/10.1016/j.aoas.2014.06.018
  14. Iwańska M., Stępień M., 2019. The effect of soil and weather conditions on yields of winter wheat in multi-environmental trials. Biomet. Lett. 56(2), 263–279. https://doi.org/10.2478/bile-2019-0016 DOI: https://doi.org/10.2478/bile-2019-0016
  15. Jaenisch B.R., Munaro L.B., Jagadish S.V.K., Lollato R.P., 2022. Modulation of wheat yield com-ponents in response to management intensification to reduce yield gaps. Front. Plant Sci. 13, 772232. https://doi.org/10.3389/fpls.2022.772232 DOI: https://doi.org/10.3389/fpls.2022.772232
  16. Kandil E.E, Marie E.A.O., 2017. Response of some wheat cultivars to nano-, mineral fertilizers and amino acids foliar application. Alex. Sci. Exch. J. 38(1), 53–68. https://doi.org/10.21608/asejaiqjsae.2017.1877 DOI: https://doi.org/10.21608/asejaiqjsae.2017.1877
  17. Kauffman G.L., Kneival D.P., Watschke T.L., 2007. Effects of biostimulant on the heat tolerance associated with photosynthetic capacity, membrane thermostability and polphenol production of perennial ryegrass. Crop Sci. 47, 261–267. https://doi.org/10.2135/cropsci2006.03.0171 DOI: https://doi.org/10.2135/cropsci2006.03.0171
  18. Khan S., Yu H., Li Q., Gao Y., Sallam B.N., Wang H., Liu P., Jiang W., 2019. Exogenous applica-tion of amino acids improves the growth and yield of lettuce by enhancing photosynthetic as-similation and nutrient availability. Agronomy 9(5), 266. https://doi.org/10.3390/agronomy9050266 DOI: https://doi.org/10.3390/agronomy9050266
  19. Knezevic D., Zecevic V., Kondic D., Markovic S., Sekularac A., 2014. Genetic and phenotypic variability of grain mass per spike in wheat under different dose of nitrogen nutrition. Turk. J. Agric. Natur. Sci. 1, 805–810.
  20. Kołodziejczyk M., Szmigiel A., 2014. Influence of intensity cultivation technology on yielding of some spring wheat cultivars. Fragm. Agron. 31(3), 75–84 [in Polish].
  21. Konvalina P., Capouchová I., Stehno Z., Moudrý J., 2012. Differences in yield parameters of emmer in comparison with old and new varieties of bread wheat. Afr. J. Agric. Res. 7(6), 986–992. https://doi.org/10.5897/AJAR10.644 DOI: https://doi.org/10.5897/AJAR10.644
  22. Ławińska K., Lasoń-Rydel M., Gendaszewska D., Grzesiak E., Sieczyńska K., Gaidau C., Epure D.G., Obraniak A., 2019. Coating of seeds with collagen hydrolysates from leather waste. Fi-bres Textil. East. Eu. 136, 59–64. https://doi.org/10.5604/01.3001.0013.1819 DOI: https://doi.org/10.5604/01.3001.0013.1819
  23. Meijer A.J., 2003. Amino acids as regulators and components of nonproteinogenic pathways. J. Nutr. 39, 2057–2062. https://doi.org/10.1093/jn/133.6.2057S DOI: https://doi.org/10.1093/jn/133.6.2057S
  24. Nyc K., 2006. Entering of irrigation systems. In: S. Karczmarczyk, L. Nowak (eds),Water needs of crop plants. PWRiL, Warsaw, p. 157–174 [in Polish].
  25. Pooryousef M., Alizadeh K., 2014. Effect of foliar application of free amino acids on alfalfa perfor-mance under rainfed conditions. Res. Crops 15, 254–258. https://doi.org/10.5958/J.2348-7542.15.1.036 DOI: https://doi.org/10.5958/j.2348-7542.15.1.036
  26. Popko M., Michalak I., Wilk R., Gramza M., Chojnacka K., Górecki H., 2018. Effect of the new plant growth biostimulants based on amino acids on yield and grain quality of winter wheat. Molecules 23, 470. https://doi.org/10.3390/molecules23020470 DOI: https://doi.org/10.3390/molecules23020470
  27. Porker K., Straight M., Hunt J.R., 2020. Evaluation of G × E × M interactions to increase harvest index and yield of early sown wheat. Front. Plant Sci. 11, 994. httpa://doi.org/10.3389/fpls.2020.00994 DOI: https://doi.org/10.3389/fpls.2020.00994
  28. Rachoń L., Szumiło G., Machaj H., 2014. Influence of the intensity cultivation technology on the yield of different genotypes of winter wheat. Annales UMCS, Agricultura 69(3), 32–41.
  29. Sadak M.S.H., Abdelhamid M.T., Schmidhalter U., 2015. Effect of foliar application of aminoacids on plant yield and some physiological parameters in bean plants irrigated with seawater. Acta Biol. Colomb. 20, 141–152. https://doi.org/10.15446/abc.v20n1.42865 DOI: https://doi.org/10.15446/abc.v20n1.42865
  30. Senapati N., Stratonovitch P., Paul M.J., Semenov M.A., 2018. Drought tolerance during reproduc-tive development is important for increasing wheat yield potential under climate change in Eu-rope. J. Exp. Bot. 70(9), 2545–2560. https://doi.org/10.1093/jxb/ery226 DOI: https://doi.org/10.1093/jxb/ery226
  31. Shekari G., Javanmardi J., 2017. Application of cysteine, methionine and amino acid containing fertilizers to replace urea: The effects on yield and quality of Broccoli. Adv. Crop. Sci. Tech. 5, 283. https://doi.org/10.4172/2329- 8863.1000283 DOI: https://doi.org/10.4172/2329-8863.1000283
  32. Shukla R., Sharma Y.K., Shukla A.K., 2014. Molecular mechanism of nutrient uptake in plants. Int. J. Curr. Res. Aca. Rev. 2(12), 142–154.
  33. Stalenga J., Jończyk K., 2007. Reaction of some winter wheat varieties to cultivation in the organic system. Biul. IHAR 245, 29–45.
  34. Wheeler T.R., Craufurd P.Q., Ellis R.H., Porter J.R., Prasad P.V., 2000. Temperature variability and the yield of annual crops. Agric. Ecosyst. Environ. 82(1–3), 159–167. DOI: https://doi.org/10.1016/S0167-8809(00)00224-3
  35. Wojdyła A.T., 2017. Possibilities of using products containing amino acids in the protection of roses against Podosphaera pannosa and their influence on plant development. Prog. Plant Prog. 57(1), 82–87. https://doi.org/10.14199/PPP-2017-014 DOI: https://doi.org/10.14199/ppp-2017-014
  36. Wojdyła A.T., 2018. Potential of using products containing amino acids in the protection of garden pansy (Viola wittrockiana) against pansy leaf anthracnose (Colletotrichum violae-tricoloris) and their impact on plant growth. Prog. Plant Prot. 58(2), 107–114. https://doi.org/10.14199/ppp-2018-013 DOI: https://doi.org/10.14199/ppp-2018-013
  37. Zecevic V., Boskovic J., Dimitrijevic M., Petrovic S., 2010. Genetic and phenotypic variability of yield components in wheat (Triticum aestivum L.). Bulg. J. Agric. Sci. 16(4), 422–428.

Downloads

Podobne artykuły

<< < 27 28 29 30 31 32 33 34 35 36 > >> 

Możesz również Rozpocznij zaawansowane wyszukiwanie podobieństw dla tego artykułu.