Abstrakt
Nornicotine is a secondary metabolite formed in tobacco leaves by the oxidative
N-demethylation (conversion) of nicotine. Its high level is undesirable because this alkaloid is
a precursor of N-nitrosonornicotine, which has been shown to have carcinogenic properties. The aim of the study was to assess the nicotine and nornicotine content in four successive generations of ten tobacco cultivars/breeding lines. The possibility of reducing potentially harmful compounds in the cultivars/breeding lines was also determined. The study was conducted as field experiments between the years 2014 and 2018. The alkaloid content in the leaves was determined by the gas chromatography/ mass spectrometry (GC/MS) method. The systematic assessment of the alkaloid profile of tobacco and eliminating converter plants in four successive generations, particularly within breeding lines characterized by a wide conversion range, made it possible to reduce the nornicotine content and, thus, the potentially carcinogenic compounds in the leaves. Three lines, ZD2, TNX1, and WGLB with a stable conversion rate of ≤3% and low content of nornicotine were obtained. Furthermore, the morphological traits of the isogenic lines ZD2, TNX1 and WGLB, which exhibit markedly different conversion capacity were evaluated. The greenhouse experiment showed that there were significant differences in some morphological traits. The non-converting lines TNX1 and ZD2 produced longer and wider 9th and 15th leaves than the converting analogues. A relationship has been identified between the traits that determine the phenotype of tobacco cultivars/lines and their ability to convert nicotine to nornicotine.
Bibliografia
- Andra S.S., Marris K.C., 2011. Tobacco-specific nitrosamines in water: An unexplored environmental health risk. Environ. Int. 37, 412–417. https://doi.org/10.1016/j.envint.2010.11.003
- Benowitz N.L., 2010. Nicotine addiction. N. Engl. J. Med. 362(24), 2295–2303. https://doi.org/10.1056/NEJMra0809890
- Berbeć A., 2014. Unpublished materials.
- Burk L.G., Jeffrey R.N., 1958. A study of inheritance of alkaloid quality in tobacco. Tob. Sci. 2(31), 139–141.
- Burns D.M., Dybing E., Gray N., Hecht S., Anderson C., Sanner T., O’Connor R., Djordjevic M., Dresler C., Hainaut P., Jarvis M., Opperhuizen A., Straif K., 2008. Mandated lowering of toxicants in cigarette smoke: A description of the World Health Organization TobReg proposal. Tob. Control 17, 132–141. https://doi.org/10.1136/tc.2007.024158
- Burton H.R., Dye N.K., Bush L.P., 1992. Distribution of tobacco constituents in tobacco leaf tissue. 1. Tobacco-specific nitrosamines. nitrate. nitrite and alkaloids. J. Agric. Food Chem. 40, 1050–1055.
- Cai B., Siminszky B., Chappell J., Dewey R.E., Bush L.P., 2012. Enantioselective demethylation of nicotine as a mechanism for variable nornicotine composition in tobacco leaf. J. Biol. Chem. 287(51), 42804–42811. https://doi.org/10.1074/jbc.M112.413807
- Chakrabarti M., Bowen S.W., Coleman N.P., Meekins, K.M., Dewey, R.E., Siminszky B., 2008. CYP82E4-mediated nicotine to nornicotine conversion in tobacco is regulated by a senescence-specific signaling pathway. Plant Mol. Biol. 66, 415–427. https://doi.org/10.1007/s11103-007-9280-6
- Chakrabarti M., Meekins K.M., Gavilano L.B., Siminszky B., 2007. Inactivation of the cyto-chrome P450 gene CYP82E2 by degenerative mutations was a key event in the evolution of the alkaloid profile of modern tobacco. New Phytol. 175(3), 565–574. https://doi.org/10.1111/j.1469-8137.2007.02116.x
- Chaplin J.F., Burk L.G., 1984. Registration of LMAFC34 tobacco germplasm. Crop Sci. 24, 1220–1220.
- Chaplin J.F., Weeks W.W., 1976. Association between percent total alkaloids and other traits in flue-cured tobacco. Crop Sci. 16, 416–418.
- Chintapakorn Y., Hamill J.D., 2003. Antisense-mediated down-regulation of putrescine N-methyltransferase activity in transgenic Nicotiana tabacum L. can lead to elevated levels of anatabine at the expense of nicotine. Plant Mol. Biol. 53, 87–105. https://doi.org/10.1023/B:PLAN.0000009268.45851.95
- Fant R.V., Henningfield J.E., Nelson R.A., Pickworth W. B., 1999. Pharmaceticokinetics and pharmacodynamics of moist snuff in humans. Tob. Control 8(4), 387–392. https://doi.org/10.1136/tc.8.4.387
- Gavilano L.B., Coleman N.P., Burnley L.E., Bowman M.L., Kalengamaliro N.E., Hayes A., Bush L., Siminszky B., 2006. Genetic engineering of Nicotiana tabacum for reduced nornicotine content. J. Agric. Food Chem. 54(24), 9071–9078. https://doi.org/10.1021/jf0610458
- Henry J.B., Vann M.C., Lewis R.S., 2019. Agronomic practices affecting nicotine concentra-tion in flue-cured tobacco: A review. Agron. J. 111(6), 3067–3075. https://doi.org/10.2134/agronj2019.04.0268
- Jack A.M., Bush L.P., Fannin F.F., Miller R.D., 2003. Variability in nicotine conversion: site or sampling? Information Bulletin, CORESTA Congress, Bucharest, A02.
- Jack A. M., Bush L.P., Fannin F.F., Li X., 2004. Relative stability of nicotine to nornicotine conversion in three Burley cultivars. Information Bulletin, CORESTA Congress, Kyoto, AP02.
- Jack A.M., Bush L.P., Fannin F.F., Li X., 2005. F1 and F2 populations of converter and non-converter air-cured tobacco plants. Information Bulletin, CORESTA Santa Cruz do Sul, A12.
- Julio E., Laporte F., Reis S., Rothan C., Dorlac de Born F., 2008. Reducing the content of nornicotine in tobacco via targeted mutation breeding. Mol. Breed. 21, 369–381. https://doi.org/10.1007/s11032-007-9138-2
- Jung S.K., Chung Y.H., Keum W.S., Kang Y.G., Shin S.K., Jo J., Choin S.J., 2005. Identifica-tion of nicotine converter plants in burley tobacco KB9118 (KB108). J. Korean Soc. Tob. Sci. 27, 11–18.
- Kajikawa M., Shoji T., Kato A., Hashimoto T., 2011. Vacuole-localized berberine bridge en-zyme-like proteins are required for a late step of nicotine biosynthesis in tobacco. Plant Physiol. 155(4), 2010–2022. https://doi.org/10.1104/pp.110.170878
- Lewis R.S., Jack A.M., Morris J.W., Robert V.J., Gavilano L.B., Siminszky B., Bush L.P., Hayes A.J., Dewey R.E., 2008. RNA interference (RNAi)-induced suppression of nicotine demethylase activity reduces levels of a key carcinogen in cured tobacco leaves. Plant Bio-technol. J. 6, 346–354. https://doi.org/10.1111/J.1467-7652.2008.00324.X
- Lewis R.S., Bowen S.W., Keogh M.R,. Dewey R.E., 2010. Three nicotine demethylase genes mediate nornicotine biosynthesis in Nicotiana tabacum L.: functional characterization of the CYP82E10 gene. Phytochem. 71(17–18), 1988–1998. https://doi.org/10.1016/j.phytochem.2010.09.011
- Lewis R.S., Lopez H.O., Bowen S.W., Andres K.R., Steede W.T., Dewey R.E., 2015. Trans-genic and mutation-based suppression of a berberine bridge enzyme-like (BBL) gene fami-ly reduces alkaloid content in field-grown tobacco. Plos One, 10(2), e0117273. https://doi.org/10.1371/Journal.Pone.0117273
- Mishra A., Chaturvedi P., Datta S., Sinukumar S., Joshi P., Garg A., 2015. Harmful effects of nicotine. Indian J. Med. Paediatr. Oncol. 36(01), 24–31. https://doi.org/10.4103/0971-5851.151771
- Schachtsiek J., Stehle F., 2019. Nicotine-free, nontransgenic tobacco (Nicotiana tabacum L.) edited by CRISPR-Cas9. Plant Biotechnol. J. 17(12), 2228–2230. https://doi.org/10.1111/pbi.13193
- Shen J-C., Shao X.G., 2006. Determination of tobacco alkaloids by gas chromatography-mass spectrometry using cloud point extraction as a preconcentration step. Anal. Chim. Acta 561(1–2), 83–87. https://doi.org/10.1016/j.aca.2006.01.002
- Shoji T., Inai K., Yazaki Y., Sato Y., Takase H., Shitan N., Yazaki K., Goto Y., Toyooka K., Matsuoka K., Hashimoto T., 2009. Multidrug and toxic compound extrusion-type trans-porters implicated in vacuolar sequestration of nicotine in tobacco roots. Plant Physiol. 149(2), 708–718. https://doi.org/10.1104/pp.108.132811
- Siminszky B., Gavilano L., Steven W.B., Dewey R.E., 2005. Conversion of nicotine to nornic-otine in Nicotiana tabacum is mediated by CYP82E4. a cytochrome P450 monooxygenase. Plant Biol. 102(41), 14919–14924. https://doi.org/10.1073/pnas.0506581102
- Sisson V.A., Severson R.F., 1990. Alkaloid composition of the Nicotiana species. Beit. Tab. Int. 14, 327–339. https://doi.org/10.2478/cttr-2013-0610
- Trojak-Goluch A., Berbeć A., 2011. Growth. development and chemical characteristics of tobacco lines carrying black root rot resistance derived from Nicotiana glauca (Grah.). Plant Breed. 130(1), 92–95. https://doi.org/10.1111/j.1439-0523.2009.01755.x
- Tso T.C., 1990. Chemical Characteristics Production and Leaf Quality and Usability. In: T.C. Tso (red.), Production, physiology and biochemistry of tobacco plant. Bestville Maryland, 595–634.
- Wang X., Bennetzen J.L., 2015. Current status and prospects for the study of Nicotiana ge-nomics, genetics and nicotine biosynthesis genes. Mol. Genet. Genomics 290, 11–21. https://doi.org/10.1007/s00438-015-0989-7
- Wernsman E.A., Davis D.L., Beeson D., Stennis V., 2000. Genetic instability at a nicotine conversion to nornicotine locus in Burley tobacco and its consequences on secondary amine alkaloids and TSNA’S. Bulletin Special, CORESTA Congress, Lisbon, 45.
- World Health Organization, 2015. Advisory Note: Global Nicotine Reduction Strategy. WHO Study Group on Tobacco Product Regulation. Geneva: WHO Press, 12–14.
- Zou X.D., BK A., Abu-Izneid T., Aziz A., Devnath P., Rauf A., Mitra S., Emran T.B., Muja-wah A.A.H., Lorenzo J.M., Mubarak M.S., Wilairatana P., Suleria H.A.R., 2021. Current advances of functional phytochemicals in Nicotiana plant and related potential value of tobacco processing waste: a review. Biomed. Pharmacother. 143, 112191. https://doi.org/10.1016/j.biopha.2021.112191
Downloads
Download data is not yet available.
-
ANETA KRAMEK,
WANDA KOCIUBA,
Wykorzystanie materiałów kolekcyjnych pszenżyta ozimego jako genetycznego źródła zawartości białka w ziarnie
,
Agronomy Science: Tom 75 Nr 3 (2020)
-
BEATA KRÓL,
Plon i jakość nasion nagietka lekarskiego (Calendula officinalis L.) w zależności od zagęszczenia roślin w łanie
,
Agronomy Science: Tom 72 Nr 3 (2017)
-
JOANNA NOCEŃ,
MARTA PUCHTA,
JERZY H. CZEMBOR,
Wykorzystanie nowoczesnych technologii sekwencjonowania DNA (NGS) w bankach genów i hodowli roślin. Praca przeglądowa
,
Agronomy Science: Tom 73 Nr 1 (2018)
-
KSENIA DRZAŻDŻYŃSKA,
JADWIGA ANDRZEJEWSKA,
KENNETH ADRIAN ALBRECHT,
MACIEJ JERZY KAZULA,
Wieloletnie bobowate rośliny pastewne w Ameryce Północnej: osiągnięcia i wyzwania nauki. Praca przeglądowa
,
Agronomy Science: Tom 72 Nr 3 (2017)
-
ALEKSANDRA NUCIA,
Białka gluteninowe – charakterystyka i ich wpływ na właściwości reologiczne pszenicy. Praca przeglądowa
,
Agronomy Science: Tom 73 Nr 2 (2018)
-
LESZEK RACHOŃ,
GRZEGORZ SZUMIŁO,
MAŁGORZATA CZUBACKA,
Occurrence of arbuscular mycorrhizal fungi and nodules in the roots of twelve legume species in South-Western Saudi Arabia
,
Agronomy Science: Tom 67 Nr 1 (2012)
-
Zbigniew J. Dolatowski,
Joanna Twarda,
Małgorzata Dudek,
Zmiany uwodnienia mięsa podczas dojrzewania
,
Agronomy Science: Tom 59 Nr 4 (2004)
-
DANUTA SUGIER,
URSZULA GAWLIK-DZIKI,
Wpływ nawożenia dolistnego na plonowanie i jakość surowca Arnica montana L. i Arnica chamissonis var. foliosa
,
Agronomy Science: Tom 64 Nr 3 (2009)
-
Magdalena Serafin-Andrzejewska,
Waldemar Helios,
Anna Jama-Rodzeńska,
Andrzej Kotecki,
Marcin Kozak,
Piotr Zarzycki,
Beata Kaliska,
Wpływ głębokości i gęstości siewu na plon i jego komponenty w uprawie samokończącej i niesamokończącej odmiany bobiku (Vicia faba var. minor L.) w warunkach Polski południowo-zachodniej
,
Agronomy Science: Tom 77 Nr 3 (2022)
-
Elsayed M. Zeidan,
Abdel-Satar A. El-Khawaga,
Hamdy A. Basha,
Ismail M. El-Hmeed,
Improvement of wheat productivity in newly reclaimed soil in Egypt
,
Agronomy Science: Tom 60 (2005)
<< < 1 2 3 4 5 6 7 8 9 10 > >>
Możesz również Rozpocznij zaawansowane wyszukiwanie podobieństw dla tego artykułu.