Agronomy Science, przyrodniczy lublin, czasopisma up, czasopisma uniwersytet przyrodniczy lublin
Przejdź do głównego menu Przejdź do sekcji głównej Przejdź do stopki

ONLINE FIRST

Artykuły

Occurrence of entomopathogenic fungi in cultivated soils in Slovakia in the intensive agricultural system production

DOI: https://doi.org/10.24326/as.2025.5537
Przesłane: 30 kwietnia 2025
Opublikowane: 02.07.2025

Abstrakt

The aim of the study was to identify the types of entomopathogenic fungi (EPF) and to determine the intensity of their occurrence in intensively cultivated agricultural soils in the Danubian Lowland, Slovakia. Soil samples were collected on two dates (spring, autumn) from seven sites where the following crops were grown: soybean, barley, alfalfa, sugar beet, maize, maize with the addition of a biostimulator and from wasteland. The entomopathogenic fungi from individual soil samples were isolated using the isolation method on a selective medium. Entomopathogenic fungi were identified microscopically based on the morphology of their microstructures and the morphology of colonies, using standard keys. The number of EPF was presented in CFU g–1 of dry matter of soil. Both in spring and autumn, EPF belonging to three genera were identified: Beauveria, Metarhizium and Cordyceps. Analyzing the average density of infectious units of the identified genera of EPF in both study dates on arable land, it was found that fungi of the genus Metarhizium spp. formed more infectious units in the spring study date, whereas fungi of the genera Beauveria spp. and Cordyceps spp. formed more infectious units in the autumn study date, and these differences were statistically significant.

Bibliografia

  1. Augustyniuk-Kram A., Kram K.J., 2012. Entomopathogenic fungi as an important natural regulator of insect outbreaks in forest (Review). In: J.A. Blanco, Y.-H. Lo (eds), Forest ecosystems – more than just trees. IntechOpen, Rijeka, 265–294.
  2. Bamisile B.S., Dash C.K., Akutse K.S., Keppanan R., Afolabi O.G., Hussain M., Qasim M., Wang L., 2018. Prospects of endophytic fungal entomopathogens as biocontrol and plant growth-promoting agents: an insight on how artificial inoculation methods affect endophytic colonization of host plants. Microbiol. Res. 217, 34–50. https://doi.org/10.1016/j.micres.2018.08.016
  3. Bidochka M.J., Menzies F.V., Kamp A.M., 2002. Genetic groups of the insect-pathogenic fungus Beauveria bassiana are associated with habitat and thermal growth preferences. Arch. Microbiol. 178, 531–537. https://doi.org/10.1007/s00203-002-0490-7
  4. Bischoff J.F., Rehner S.A., Humber R.A., 2006. Metarhizium frigidum sp. nov.: a cryptic species of M. anisopliae and member of the M. flavoviride complex. Mycologia 98(5), 737–745. https://doi.org/10.1080/15572536.2006.11832645
  5. Bischoff J.F., Rehner S.A., Humber R.A., 2009. A multilocus phylogeny of the Metarhizium anisopliae lineage. Mycologia, 101(4), 512–530. https://doi.org/10.3852/07-202
  6. Ciceoi R., Dobrin A., Moţ A., Fătu C., Dinu M.M., 2021. Effect of entomopathogenic fungi (Beauveria bassiana) on soil nutrients content. Sci. Pap. Ser. B, Hortic. 65(1), 722–727.
  7. Dara S.K. 2017. Insect resistance to biopesticides. Strawberries Vegetables. https://ucanr.edu/blogs/blogcore/postdetail.cfm?postnum=25819 [date of access: 10.01.2018].
  8. Domingues M.M., dos Santos P.L., Costa Gêa B.C., de Carvalho G.V.R., Zanuncio J.C., Serrão J.E., Zanetti R., Wilcken C.F., 2022. Diversity of entomopathogenic fungi from soils of eucalyptus and soybean crops and natural forest areas. Braz. J. Biol. 82, e263240, 1–6. https://doi.org/10.1590/1519-6984.263240
  9. Domingues M.M., Becchi L.K., Velozo S.G.M., Souza A.R., Barbosa L.R., Soares M.A., Serrão J.E., Zanuncio J.C., Wilcken C.F., 2020. Selectivity of mycoinsecticides and a pyrethroid to the egg parasitoid Cleruchoides noackae (Hymenoptera: Mymaridae). Sci. Rep. 10(1), 14617. http://dx.doi.org/10.1038/s41598-020-71151-2
  10. Fang W., Leger R.J.S., 2010. Mrt, a gene unique to fungi, encodes an oligosaccharide transporter and facilitates rhizosphere competency in Metarhizium robertsii. Plant Physiol. 154(3), 1549–1557. https://doi.org/10.1104/pp.110.163014
  11. FAO, IFAD, UNICEF, WFP, WHO, 2018. The State of Food Security and Nutrition in the World 2018. Building climate resilience for food security and nutrition. Rome, FAO.
  12. Fenibo E.O., Ijoma G.N., Matambo T., 2021. Biopesticides in sustainable agriculture: A critical sustainable development driver governed by green chemistry principles. Front. Sustain. Food Syst. 5, 619058, 1–6. https://doi.org/10.3389/fsufs.2021.619058
  13. Fiedler Ż., Sosnowska D., 2017. Side effects of fungicides and insecticides on entomopathogenic fungi in vitro. J. Plant Prot. Res. 57(4), 355–360. https://doi.org/10.1515/jppr-2017-0048
  14. Glare T.R., Reimer Y.S.O., Cummings N., Rivas-Franco F., Nelson T.L., Zimmermann G., 2021. Diversity of the insect pathogenic fungi in the genus Metarhizium in New Zealand. New Zealand J. Bot. 59(4), 440–456. http://dx.doi.org/10.1080/0028825X.2021.1890155
  15. Gonzalez-Guzman A., Raya-Diaz S., Sacristán D., Yousef M., Sánchez-Rodríguez A.R., Barrón V., del Campillo M.C., Torrent J., 2021. Effects of entomopathogenic fungi on durum wheat nutrition and growth in the field. Eur. J. Agron. 128, 126282. https://doi.org/10.1016/j.eja.2021.126282
  16. Gorczyca A., Galon A., Tatoj A., Wojtaszek I., Matras E., 2018. Occurrence of entomopathogenic fungi in agricultural and natural soils in south-eastern Poland. J. Res. Appl. Agric. Eng. 63(2), 63–67.
  17. Hawkes C.V., Kivlin S., Rocca J.D., Huguet V., Thomsen M.A., Suttle K.B., 2011. Fungal community responses to precipitation. Glob. Change Biol. 17(4), 1637–1645. https://doi.org/10.1111/j.1365-2486.2010.02327.x
  18. Hernandez M.M., Martinez-Villar E., Peace C., Perez-Moreno I., Marco V., 2012. Compatibility of the entomopathogenic fungus Beauveria bassiana with flufenoxuron and azadirachtin against Tetranychus urticae. Exp. Appl Acarol. 58, 395–405. https://doi.org/10.1007/s10493-012-9594-1
  19. Holka M., Kowalska J., 2023. The potential of adjuvants used with microbiological control of insect pests with emphasis on organic farming. Agriculture 13(9), 1659. https://doi.org/10.3390/agriculture13091659
  20. Hu G., Leger R.J.S., 2002. Field studies using a recombinant mycoinsecticide (Metarhizium anisopliae) reveal that it is rhizosphere competent. Appl. Environ. Microbiol. 68(12), 6383–6387. https://doi.org/10.1128/AEM.68.12.6383-6387.2002
  21. Humber A.R., 2012. Identification of entomopathogenic fungi. In: L.A. Lacey (ed.), Manual of techniques in invertebrate pathology. Academic Press, London, 151–187. https://doi.org/10.1016/B978-0-12-386899-2.00006-3
  22. Inglis G.D., Enkerli J., Goettel M.S., 2012. Laboratory techniques used for entomopathogenic fungi: Hypocreales. In: L.A. Lacey (ed.), Manual of techniques in invertebrate pathology. Academic Press, London, 189–253. https://doi.org/10.1016/B978-0-12-386899-2.00007-5
  23. Jordan C., dos Santos P.L., dos Santos Oliveira L.R., Domingues M.M., Costa Gêa B.C., Ribeiro M.F., Mascarin G.M., Wilcken C.F., 2021. Entomopathogenic fungi as the microbial frontline against the alien Eucalyptus pest Gonipterus platensis in Brazil. Sci. Rep. 11, 7233. https://doi.org/10.1038/s41598-021-86638-9
  24. Keller S., Zimmermann G., 1989. Mycopathogens of soil insects. In: N. Wilding, N.M. Collins, P.M. Hammond, J.F. Webber (eds.), Insect–fungus interactions, Academic Press, London, 239–270. https://doi.org/10.1016/B978-0-12-751800-8.50016-1
  25. Kepler R.M., Luangsa-ard J.J., Hywel-Jones N.L., Quandt C.A., Sung G-H., Rehner S.A., Aime M.C., Henkel T.W., Sanjuan T., Zare R., Chen M., Li, Z., Rossman A.Y., Spatafora J.W., Shrestha B., 2017. A phylogenetically-based nomenclature for Cordycipitaceae (Hypocreales). IMA Fungus 8(2), 335–353. https://doi.org/10.5598/imafungus.2017.08.02.08
  26. Khun K.K., Ash G.J., Stevens M.M., Huwer R.K., Wilson B.A.L., 2021. Transmission of Metarhizium anisopliae and Beauveria bassiana to adults of Kuschelorhynchus macadamiae (Coleoptera: Curculionidae) from infected adults and conidiated cadavers. Sci. Rep. 11, 2188. https://doi.org/10.1038/s41598-021-81647-0
  27. Kim S., Hwang D.Y., Shin T.Y., Kwak J.H., 2023. Correlation of fruit tree rhizosphere soils with entomopathogenic fungi. Entomol. Res. 53(9), 333–342. https://doi.org/10.1111/1748-5967.12666
  28. Konopická J., Bohatá A., Palevsky E., Nermuť J., Půža V., Zemek R., 2022. Survey of entomopathogenic and mycoparasitic fungi in the soil of onion and garlic fields in the Czech Republic and Israel. J. Plant Dis. Prot. 129, 271–281. https://doi.org/10.1007/s41348-021-00557-5
  29. Kovač M., Tkaczuk C., Pernek M., 2021. First report of entomopathogenic fungi occurrence in forest soils in Croatia. Forests 12(12), 1690. https://doi.org/10.3390/f12121690
  30. Landa Z., Horňák P., Charvátová H., Osborne L.S., 2002. Distribution, occurrence and potential use of entomopathogenic fungi in arable soils in Czech Republic. In: Proceedings of international conference ISTRO “Current trends in the research of soil environment”, 195–201.
  31. Liao Y., Smyth G. K., Shi W., 2013. featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics 30(7), 923–930. https://doi.org/10.1093/bioinformatics/btt656
  32. Lomer L., Bateman R.P., Johnson D.L., Langewald J., Thomas M.B., 2001. Biological control of locusts and grasshoppers. Annu. Rev. Entomol. 46, 667–702. https://doi.org/10.1146/annurev.ento.46.1.667
  33. Majchrowicz I., Poprawski T.J., 1993. Effects in vitro of nine fungicides on growth of entomopathogenic fungi. Biocontrol Sci. Technol. 3(3), 321–336. https://doi.org/10.1080/09583159309355287
  34. Majchrowska-Safaryan A., Tkaczuk C., Baj-Wójtowicz B., 2023. Occurrence of entomopathogenic fungi in the soils of habitats of various use. Agron. Sci. 78(1), 5–18. https://doi.org/10.24326/as.2023.4956
  35. Majchrowska-Safaryan A., Tkaczuk C., 2021. Abundance of entomopathogenic fungi in leaf litter and soil layers in forested habitats in Poland. Insects 12(2), 134. https://doi.org/10.3390/insects12020134
  36. Mateo-Sagasta J., Zadeh S.M., Turral H., Burke J., 2017. Water pollution from agriculture: a global review. Executive summary. Rome, Italy: FAO; Colombo, Sri Lanka: International Water Management Institute (IWMI). CGIAR Research Program on Water, Land and Ecosystems (WLE), 35.
  37. Medo J., Cagáň Ĺ., 2011. Factors affecting the occurrence of entomopathogenic fungi in soils of Slovakia as revealed using two methods. Biol. Control, 59(2), 200–208. https://doi.org/10.1016/j.biocontrol.2011.07.020
  38. Medo J., Michalko J., Medova J., Cagáň Ĺ., 2016. Phylogenetic structure and habitat associations of Beauveria species isolated from soils in Slovakia. J. Invertebr. Pathol. 140, 46–50. https://doi.org/10.1016/j.jip.2016.08.009
  39. Meyling N.V., Lübeck M., Buckley E.P., Eilenberg J., Rehner S.A., 2009. Community composition, host range and genetic structure of the fungal entomopathogen Beauveria in adjoining agricultural and seminatural habitats. Mol. Ecol. 18(6), 1282–1293. https://doi.org/10.1111/j.1365-294X.2009.04095.x
  40. Meyling N.V., Eilenberg J., 2007. Ecology of the entomopathogenic fungi Beauveria bassiana and Metarhizium anisopliae in temperate agroecosystems: Potential for conservation biological control. Biol. Control, 43(2), 145–155. https://doi.org/10.1016/j.biocontrol.2007.07.007
  41. Pelizza S.A., Scorsetti A.C., Fogel M.N., Pacheco-Marino S.G., Stenglein S.A., Cabello M.N., Lange C.E., 2015. Compatibility between entomopathogenic fungi and biorational insecticides in toxicity against Ronderosia bergi under laboratory conditions. BioControl 60, 81–91. https://doi.org/10.1007/s10526-014-9606-7
  42. Prenerová E., Zemek R., Weyda F., Volter L., 2009. Entomopathogenic fungi isolated from soil in the vicinity of Cameraria ohridella infested horse chestnut trees. IOBC-WPRS Bull. 45, 321–324.
  43. Quesada-Moraga E., Navas-Cortés J.A., Maranhao E.A.A., Ortiz-Urquiza A., Santiago-Álvarez C., 2007. Factors affecting the occurrence and distribution of entomopathogenic fungi in natural and cultivated soils. Mycol. Res. 111(8), 947–966. https://doi.org/10.1016/j.mycres.2007.06.006
  44. Rashid M., Baghdadi A., Sheikhi A., Pourian H-R., Gazavi M., 2010. Compatibility of Metarhizium anisopliae (Ascomycota: Hypocreales) with several insecticides. J. Plant Prot. Res. 50(1), 22–27. https://doi.org/10.2478/v10045-010-0004-6
  45. Rehner S.A., Buckley E., 2005. A Beauveria phylogeny inferred from nuclear ITS and EF1-α sequences: evidence for cryptic diversification and links to Cordyceps teleomorphs. Mycologia 97(1), 84–98. http://dx.doi.org/10.3852/mycologia.97.1.84
  46. Rehner S.A., Minnis A.M., Sung G.H., Luangsa-ard J.J., Devotto L., Humber R.A., 2011. Phylogeny and systematics of the anamorphic, entomopathogenic genus Beauveria. Mycologia 103(5), 1055–1073. https://doi.org/10.3852/10-302
  47. Samson R.A., Evans H.C., Latgé J.-P., 1988. Atlas of entomopathogenic fungi. Springer-Verlag, Berlin. https://doi.org/10.1007/978-3-662-05890-9
  48. Sharma L., Oliveira I., Torres L., Marques G., 2018. Entomopathogenic fungi in Portuguese vineyards soils: suggesting a ‘Galleria-Tenebrio-bait method’ as bait-insects Galleria and Tenebrio significantly underestimate the respective recoveries of Metarhizium (robertsii) and Beauveria (bassiana). MycoKeys 38, 1–23. https://doi.org/10.3897/mycokeys.38.26790
  49. Strasser H., Forer A., Schinner F., 1996. Development of media for the selective isolation and maintenance of virulence of Beauveria brongniartii. In: T.A. Jackson, T.R. Glare (eds), Microbial control of soil dwelling pests. AgResearch, Lincoln, New Zealand, 125–130.
  50. Thirumeni M.A., Yashkamal K., Mohamed R.R., Shivakumar M.S., 2024. Entomopathogenic fungi as biopesticides for sustainable agriculture. In: S.K. Deshmukh, K.R. Sridhar (eds.), Entomopathogenic fungi. Springer, Singapore, 81–100. https://doi.org/10.1007/978-981-97-5991-0_4
  51. Tkaczuk C., 2001. Wpływ wybranych pestycydów stosowanych w ochronie sadów na wzrost grzybów owadobójczych [The effect of selected pesticides used in orchard protection on the growth of entomopathogenic fungi]. Biul. Nauk. 12, 375–383.
  52. Tkaczuk C., 2008. Occurrence and infective potential of entomopathigenic fungi in soils of agrocenoses and seminatural habitats in the agricultural landscape. Sci. Diss. 94, Publisher AP, Siedlce, 160.
  53. Tkaczuk C., Harasimiuk M., Król A., Bereś P.K., 2015. The effect of selected pesticides on growth of entomopathogenic fungi Hirsutella nodulosa and Beauveria bassiana. J. Ecol. Eng. 16(3), 177–183. https://doi.org/10.12911/22998993/2952
  54. Tkaczuk C., Król A., Majchrowska-Safaryan A., Niecewicz Ł., 2014. The occurrence of entomopathogenic fungi in soils from fields cultivated in a conventional and organic system. J. Ecol. Eng. 15(4), 137–144. https://doi.org/10.12911/22998993.1125468
  55. Tkaczuk C., Krzyczkowski T., Głuszczak B., Król A., 2012. The influence of selected pesticides on the colony growth and conidial germination of the entomopathogenic fungus Beauveria bassiana (Bals.) Vuill. Prog. Plant Prot. 52(4), 969–974. http://dx.doi.org/10.14199/ppp-2012-167
  56. Tkaczuk C., Majchrowska-Safaryan A., Harasimiuk M., 2016. The occurrence and infective potential of entomopathogenic fungi in the soil of arable fields, meadows and forest habitats. Prog. Plant Prot. 56, 5–11. http://dx.doi.org/10.14199/ppp-2016-001
  57. Uzman D., Pliester J., Leyer I., Entling M.H., Reineke A., 2019. Drivers of entomopathogenic fungi presence in organic and conventional vineyard soils. Appl. Soil Ecol. 133, 89–97. https://doi.org/10.1016/j.apsoil.2018.09.004
  58. Vänninen I., 1996. Distribution and occurrence of four entomopathogenic fungi in Finland: Effect of geographical location, habitat type and soil type. Mycol. Res. 100, 93–101. https://doi.org/10.1016/S0953-7562(96)80106-7
  59. Vega F.E., Goettel M.S., Blackwell M., Chandler D., Jackson M.A., Keller S., Koike M., Maniania N.K., Monzón A., Ownley B.H., Pell J.K., Rangel D.E.N., Roy H.E., 2009. Fungal entomopathogens: new insights on their ecology. Fungal Ecol. 2(4), 149–159. https://doi.org/10.1016/j.funeco.2009.05.001
  60. Vega F.E., Posad, F., Aime M.C., Pava-Ripoll M., Infante F., Rehner S.A., 2008. Entomopathogenic fungal endophytes. Biol. Control 46(1), 72–82. https://doi.org/10.1016/j.biocontrol.2008.01.008
  61. Wang C., Leger R.J.S., 2007. The MAD1 adhesin of Metarhizium anisopliae links adhesion with blastospore production and virulence to insects, and the MAD2 adhesin enables attachment to plants. Eukaryotic Cell 6(5), 808–816. https://doi.org/10.1128/ec.00409-06
  62. Welch R.M., Graham R.D., 2004. Breeding for micronutrients in staple food crops from a human nutrition perspective. J. Exp. Bot. 55(396), 353–364. http://dx.doi.org/10.1093/jxb/erh064
  63. Wang Y., Chen L., Xiang W., Ouyang S., Zhang T., Zhang X., Zeng Y., Hu Y., Luo G., Kuzyakov Y., 2021. Forest conversion to plantations: a meta-analysis of consequences for soil and microbial properties and functions. Glob. Change Biol. 27(21), 5643–5656. https://doi.org/10.1111/gcb.15835
  64. Yang N., Li X.X., Liu D., Zhang Y., Chen Y.H., Wang B., Hua J., Zhang J., Peng S., Ge Z., Li J., Ruan H., Mao L., 2022. Diversity patterns and drivers of soil bacterial and fungal communities along elevational gradients in the Southern Himalayas, China. Appl. Soil Ecol. 178, 104563. https://doi.org/10.1016/j.apsoil.2022.104563

Downloads

Download data is not yet available.

Podobne artykuły

<< < 11 12 13 14 15 16 17 18 19 20 > >> 

Możesz również Rozpocznij zaawansowane wyszukiwanie podobieństw dla tego artykułu.