Abstract
In Poland, as in the global energy market, the popularity of renewable energy sources, whose main advantage over fossil fuels is climate neutrality, is growing. An alternative to dedicating land exclusively to renewable energy is agrivoltaics, which involves dual use of land: for agricultural production and for photovoltaic installations that convert solar energy into usable energy simultaneously. The study's main purpose was to answer two questions: to what extent are the agricultural lands of eastern Poland suitable for the development of agrivoltaics, and how does the selection of criteria affect the final result of the analysis in light of the Analytic Hierarchy Process. The study area was the Lublin Voivodeship, whose potential was evaluated based on 8 orography and land use criteria. The study focuses on spatial conditions, whereas legal and economic conditions have not been considered. The analysis showed that implementing agrivoltaics is theoretically feasible on 79% of the Voivodeship’s total agricultural land, of which 9,961 km2 can be considered at least moderately highly suitable. Additionally, two alternative scenarios were analysed: in the first, only orography criteria were assessed, and in the second, only land use. The comparative analysis revealed that the choice of criteria significantly impacts the results. The highest area suitability was obtained in the assessment considering land use only, and the lowest for orography.
References
- Adjiski V., Serafimovski D., 2024. GIS – and AHP-based decision systems for evaluating optimal locations of photovoltaic power plants: case study of Republic of North Macedonia. Geomat. Environ. Eng. 18(1), 51–82. https://doi.org/10.7494/geom.2024.18.1.51
- Alami Merrouni A., Elwali Elalaoui F., Mezrhab A., Mezrhab A., Ghennioui A., 2018. Large scale PV sites selection by combining GIS and Analytical Hierarchy Process. Case study: Eastern Morocco. Renew. Energy 119, 863–873. https://doi.org/10.1016/j.renene.2017.10.044
- Albraheem L., Alabdulkarim L., 2021. Geospatial analysis of solar energy in Riyadh using GIS-AHP-based technique. Int. J. Geo-Inf. 10(5), 291. https://doi.org/10.3390/ijgi10050291
- Almasad A., Pavlak G., Alquthami T., Kumara S., 2023. Site suitability analysis for implementing solar PV power plants using GIS and fuzzy MCDM based approach. Sol. Energy 249, 642–650. https://doi.org/10.1016/j.solener.2022.11.046
- Amaducci S., Yin X., Colauzzi M., 2019. Agrivoltaic systems to optimise land use for electric ener-gy production. Appl. Energy 220, 545–561. https://doi.org/10.1016/j.apenergy.2018.03.081
- Barbón A., Fortuny Ayuso P., Bayón L., Silva C.A., 2023. Experimental and numerical investiga-tion of the influence of terrain slope on the performance of single-axis trackers. Appl. Energy 348, 121524. https://doi.org/10.1016/j.apenergy.2023.121524
- Binduhewa P.J., 2021. Sizing algorithm for a photovoltaic system along an urban railway network towards net zero emission. Int. J. Photoenergy 1, 5523448. https://doi.org/10.1155/2021/5523448
- Campana P.E., Lawford R., 2022. Renewable energies in the context of the water–food–energy nexus. In: J. Jurasz, A. Beluco (eds), Complementarity of variable renewable energy sources. Academic Press, 571–614. https://doi.org/10.1016/B978-0-323-85527-3.00010-8
- Cansino-Loeza B., Del Carmen Munguía-López A., Ponce-Ortega J.M., 2022. Optimizing the allo-cation of resources for the security of the water-energy-food nexus. In: L. Montastruc, S. Negny, Computer Aided Chemical Engineering, vol. 51, 1579–1584. https://doi.org/10.1016/B978-0-323-95879-0.50264-2
- Chikate B.V., Sadawarte Y.A., 2015. The factors affecting the performance of solar cell. Internation-al Conference on Advancements in Engineering and Technology 2015, ICQUEST2015(1), 4–8.
- Colak H.E., Memisoglu T., Gercek Y., 2020. Optimal site selection for solar photovoltaic (PV) power plants using GIS and AHP: A case study of Malatya Province, Turkey. Renew. Energy 149, 565–576. https://doi.org/10.1016/j.renene.2019.12.078
- Copernicus Land Monitoring Service. https://doi.org/10.2909/cd534ebf-f553-42f0-9ac1-62c1dc36d32c
- Doorga J.R.S, Rughooputh S.D.D.V., Boojhawon R., 2019. Multi-criteria GIS-based modelling technique for identifying potential solar farm sites: A case study in Mauritius. Renew. Energy 133, 1201–1219. https://doi.org/10.1016/j.renene.2018.08.105
- Elboshy B., Alwetaishi M., Aly R., Zalhaf A.S., 2022. A suitability mapping for the PV solar farms in Egypt based on GIS-AHP to optimize multi-criteria feasibility. Ain Shams Eng. J. 13(3), 101618. https://doi.org/10.1016/j.asej.2021.10.013
- Global Solar Atlas, https://globalsolaratlas.info/ [access: 04.05.2025].
- Golden B.L., Wang Q.,1989. An alternate measure of consistency. In: B.L. Golden, E.A. Wasil, P.T. Harker (eds), Analytic hierarchy process: applications and studies. New York, 68–81. https://doi.org/10.1007/978-3-642-50244-6_5
- Günen M.A., 2021. A comprehensive framework based on GIS-AHP for the installation of solar PV farms in Kahramanmaraş, Turkey. Renew. Energy 178, 212–225. https://doi.org/10.1016/ j.renene.2021.06.078
- Harinarayana T., Vasavi K.S.V., 2014. Solar energy generation using agriculture cultivated lands. Smart Grid Renew. Energy 05(02), 31–42. http://dx.doi.org/10.4236/sgre.2014.52004
- IEA, 2023. World energy outlook 2023, France.
- IEA, IRENA, UNSD, World Bank, WHO, 2023. Tracking SDG 7: The energy progress report. Washington DC.
- IEA, 2024. Renewables 2023. Paris.
- Jo H., Asekova S., Bayat M.A., Ali L., Song J.T., Ha Y.-S., Hong D.-H., Lee J.-D., 2022. Compar-ison of yield and yield components of several crops grown under agro-photovoltaic system in Korea. Agriculture 12(5), 619. https://doi.org/10.3390/agriculture12050619
- Klugmann-Radziemska E., 2014, Photovoltaic-installation performance in Central Europe on the example of Poland., J. Solar Eneg. Res. Updat. 1, 3–11. https://doi.org/10.15377/2410-2199.2014.01.01.1
- Kottek M., Grieser J., Beck C., Rudolf B., Rubel F., 2006. World map of the Köppen-Geiger climate classification updated. Meteorol. Z. 15(3). 259–263. https://dx.doi.org/10.1127/0941-2948/2006/0130
- Kurowska K., Kryszk H., Bielski S., 2022. Location and technical requirements for photovoltaic power stations in Poland. Energies 15(7), 2701. https://doi.org/10.3390/en15072701
- Malu P.R., Sharma U.S., Pearce J.M., 2017. Agrivoltaic potential on grape farms in India. Sustain. Energy Technol. Assess. 104–110. https://doi.org/10.1016/j.seta.2017.08.004
- Mamun M.A.A., Dargusch P., Wadley D., Zulkarnain N.A., Aziz A.A., 2022. A review of research on agrivoltaic systems. Renew. Sustain. Energy Rev. 161, 112351. https://doi.org/10.1016/j.rser.2022.112351
- Matuszczyk P., Popławski T., Flasza J., 2015. The influence of solar radiation and temperature module on selected parameters and the power rating of photovoltaic panels. Prz. Elektrotech. 91(12), 161–164. https://doi.org/10.15199/48.2015.12.40
- Mbah R.E., Wasum D., 2022. Russian-Ukraine 2022 war: a review of the economic impact of Rus-sian-Ukraine crisis on the USA, UK, Canada, and Europe. Adv. Soc. Sci. Res. J. 9(3), 144–153. https://doi.org/10.14738/assrj.93.12005
- Munkhbat U., Choi Y., 2021. GIS-based site suitability analysis for solar power systems in Mongo-lia. Appl. Sci. 11(9), 3748. https://doi.org/10.3390/app11093748
- Nájera-Ruiz O., Martínez-Gamboa I., Sellschopp-Sánchez S., Santana G., Escalante G., Álvarez-
- -Macías C., 2018. Efficiency improvement of photovoltaic cells by cooling using Peltier effect. 2018 IEEE 7th World Conference on Photovoltaic Energy Conversion (WCPEC), 0438–0441. https://doi.org/10.1109/PVSC.2018.8547996
- Ouchani F., Jbaihi O., Maaroufi M., Ghennioui A., 2021. Identification of suitable sites for large‐scale photo-voltaic installations through a geographic information system and analytical hierar-chy process combination: A case study in Marrakesh‐Safi region, Morocco. Prog. Photovolt. 29(7), 714–724. https://doi.org/10.1002/pip.3357
- Pedrero J., Hermoso N., Hernández P., Muñoz I., Arrizabalaga E., Mabe L., Prieto I., Izkara J.L., 2019. Assessment of urban-scale potential for solar PV generation and consumption. IOP Conf. Series: Earth and Environmental Science 323, 012066. https://doi.org/10.1088/1755-1315/
- 323/1/012066
- Polish Central Office of Geodesy and Cartography, https://www.geoportal.gov.pl/ [access: 04.05.2025].
- Prieto-Amparán J.A., Pinedo-Alvarez A., Morales-Nieto C.R., Valles-Aragón M.C., Álvarez-Holguín A., Villarreal-Guerrero F., 2021. A regional GIS-assisted multi-criteria evaluation of site-suitability for the development of solar farms. Land 10(2), 217. https://doi.org/10.3390/land10020217
- Raza M.A., Yousif M., Hassan M., Numan M., Abbas Kazmi S.A., 2023. Site suitability for solar and wind energy in developing countries using combination of GIS-AHP; a case study of Paki-stan. Renew. Energy 206, 180–191. https://doi.org/10.1016/j.renene.2023.02.010
- Redi S., Aglietti G.S., Tatnall A.R., Markvart T., 2010. An evaluation of a high altitude solar radia-tion platform. J. Sol. Energy Eng. 132(1), 011004. http://dx.doi.org/10.1115/1.4000327
- Rekik S., El Alimi S., 2023. Optimal wind-solar site selection using a GIS-AHP based approach: A case of Tunisia. Energ. Convers. Man-X 18, 100355. https://doi.org/10.1016/j.ecmx.2023.100355
- Rios R., Duarte S., 2021. Selection of ideal sites for the development of large-scale solar photovolta-ic projects through Analytical Hierarchical Process – Geographic information systems (AHP-GIS) in Peru. Renew. Sust. Energy Rev. 149, 111310. https://doi.org/10.1016/j.rser.2021.111310
- Ruiz H.S., Sunarso A., Ibrahim-Bathis K., Murti S.A., Budiarto I., 2020. GIS-AHP Multi Criteria Decision Analysis for the optimal location of solar energy plants at Indonesia. Energy Rep. 6, 3249–3263. https://doi.org/10.1016/j.egyr.2020.11.198
- Saaty R.W., 1987. The analytic hierarchy process – what it is and how it is used. Math. Mod. 9(3–5), 161–176. https://doi.org/10.1016/0270-0255(87)90473-8
- Settou B., Settou N., Gouareh A., Negrou B., Mokhtara C., Messaoudi D., 2021. A high-resolution geographic information system-analytical hierarchy process-based method for solar PV power plant site selection: a case study Algeria. Clean. Techn. Environ. Policy 23(1), 219–234. https://doi.org/10.1007/s10098-020-01971-3
- Shehab Z.N., Faisal R.M., Ahmed S.W., 2024. Multi-criteria decision making (MCDM) approach for identifying optimal solar farm locations: A multi-technique comparative analysis. Rene. En-ergy 237, 121787. https://doi.org/10.1016/j.renene.2024.121787
- Shen X., Wei H., Wei L., 2020. Study of trackside photovoltaic power integration into the traction power system of suburban elevated urban rail transit line. Appl. Energy 260, 114177. https://doi.org/10.1016/j.apenergy.2019.114177
- Solon J., Borzyszkowski J.; Bidłasik M., Richling A., Badora K., Balon J., Brzezińska-Wójcik T., Chabudziński Ł., Dobrowolski R., Grzegorczyk I., Jodłowski M., Kistowski M., Kot R., Krąż P., Lechnio J., Macias A., Majchrowska A., Malinowska E., Migoń P., Myga-Piątek U., Nita J., Papińska E., Rodzik J., Strzyż M., Terpiłowski S., Ziaja W., 2018. Physico-geographical mesoregions of Poland: Verification and adjustment of boundaries on the basis of contempo-rary spatial data. Geogr. Pol. 91(2), 143–170. https://doi.org/10.7163/GPol.0115
- Statistics Poland, 2023a. Energy 2023. Rzeszów.
- Statistics Poland, 2023b. Statistical yearbook of the regions – Poland. Warsaw.
- Statistical Office in Lublin, 2021. Report on the socio-economic situation of Lubelskie Voivodship 2021. Lublin.
- Statistical Office in Lublin, 2023a. Demographic situation of Lubelskie Voivodship in 2022. Lublin.
- Statistical Office in Lublin, 2023b. Agriculture in Lubelskie Voivodship in 2022. Lublin.
- Sun L., Jiang Y., Guo Q., Ji L., Xie Y., Qiao Q., Huang G, Xiao K., 2021. A GIS-based multi-criteria decision making method for the potential assessment and suitable sites selection of PV and CSP plants. Resour. Conserv. Recycl. 168, 105306. https://doi.org/10.1016/j.resconrec.2020.105306
- Tomczyk A.M., Bednorz E. (eds), 2022. Atlas klimatu Polski (1991–2020) [Atlas of the Climate of Poland (1991-2020)]. Bogucki Wydawnictwo Naukowe. Poznań.
- Trommsdorff M., Kang J., Reise C., Schindele S., Bopp G., Ehmann A., Weselek A., Högy P., Obergfell T., 2021. Combining food and energy production: Design of an agrivoltaic system applied in arable and vegetable farming in Germany. Renew. Sustain. Energy Rev. 140, 110694. https://doi.org/10.1016/j.rser.2020.110694
- U.S. Geological Survey, https://earthexplorer.usgs.gov [access: 04.05.2025].
- Vrînceanu A., Dumitrașcu M., Kucsicsa G., 2022. Site suitability for photovoltaic farms and current investment in Romania. Renew. Energy 187, 320–330. https://doi.org/10.1016/j.renene.2022.01.087
- Weselek A., Bauerle A., Hartung J., Zikeli S., Lewandowski I., Högy P., 2021. Agrivoltaic system impacts on microclimate and yield of different crops within an organic crop rotation in a temperate climate. Agron. Sustain. Dev. 41(5), 59. https://doi.org/10.1007/s13593-021-00714-y
- Weselek A., Ehmann A., Zikeli S., Lewandowski I., 2019. Agrophotovoltaic systems: applications, challenges, and opportunities. A review. Agron. Sustain. Dev. 39(4), 35. https://doi.org/10.1007/s13593-019-0581-3
- Zondag H., 2008. Flat-plate PV-Thermal collectors and systems: A review. Renew. Sustain. Energy Rev. 12(4), 891–959. https://doi.org/10.1016/j.rser.2005.12.012
- Yang Q., Huang T., Wang S., Li J., Dai S., Wright S., Wang Y., Peng H., 2019. A GIS-based high spatial resolution assessment of large-scale PV generation potential in China. Appl. Energy 247, 254–269. https://doi.org/10.1016/j.apenergy.2019.04.005
- Yousefi H., Hafeznia H., Yousefi-Sahzabi A., 2018. Spatial site selection for solar power plants using a GIS-based boolean-fuzzy logic model: a case study of Markazi Province, Iran. Energies 11(7), 1648. https://doi.org/10.3390/en11071648
Downloads
Download data is not yet available.
-
MICHAŁ NOWAK,
JUSTYNA LEŚNIOWSKA-NOWAK,
MAGDALENA SOZONIUK,
Regulation of mitochondrial manganese superoxide dismutase (MnSOD) gene expression in cereals by copper and manganese excess
,
Agronomy Science: Vol. 75 No. 2 (2020)
-
Krzysztof Orzech,
Marek Marks,
Janusz Nowicki,
Assessment of energy input for three methods of medium soil cultivation
,
Agronomy Science: Vol. 59 No. 3 (2004)
-
Lesław Bernard Lahuta,
Joanna Szablińska-Piernik,
Ryszard J. Górecki,
Joanna Mitrus,
Marcin Horbowicz,
Changes in the content of D-chiro-inositol and its α-D-galactosyl derivatives during vegetation and desiccation of common buckwheat (Fagopyrum esculentum Moench)
,
Agronomy Science: Vol. 78 No. 2 (2023)
-
Piotr Barbaś,
Hakiye Aslan,
Imran Aslan,
Dominika Skiba,
Olutosin Ademola Otekunrin,
Barbara Helena Sawicka,
Prospects for using pesticides in agriculture
,
Agronomy Science: Vol. 78 No. 1 (2023)
-
ALEKSANDRA PIETRUSIŃSKA,
MONIKA ŻUREK,
URSZULA PIECHOTA,
PIOTR SŁOWACKI,
KINGA SMOLIŃSKA,
Searching for diseases resistance sources in old cultivars, landraces and wild relatives of cereals. A review
,
Agronomy Science: Vol. 73 No. 4 (2018)
-
MAREK GUGAŁA,
KRYSTYNA ZARZECKA,
ANNA SIKORSKA,
The effect of herbicides and their mixtures and weather conditions on the content of vitamin C in edible potato tubers
,
Agronomy Science: Vol. 74 No. 4 (2019)
-
Marian Wesołowski,
Dariusz Juszczak,
Zbigniew Boniek,
The effect of choosen of pesticides on the yielding, weed infestation and leaf infection of sugar beet
,
Agronomy Science: Vol. 60 (2005)
-
Stanisław Deryło,
Kazimierz Szymankiewicz,
Ryszard Pisarski,
Infestation dynamics of naked oats canopy under the conditions of differentiated soil tillage
,
Agronomy Science: Vol. 61 (2006)
-
Helena Żurek,
Barbara Wróbel,
Jan Zastawny,
Evaluation of nutritive value of silage from bog meadows
,
Agronomy Science: Vol. 61 (2006)
-
Czesława Trąba,
Paweł Wolański,
Krzysztof Oklejewicz,
Różnorodność florystyczna wybranych zbiorowisk nieleśnych doliny Sanu
,
Agronomy Science: Vol. 61 (2006)
<< < 1 2 3 4 5 6 7 8 9 10 > >>
You may also start an advanced similarity search for this article.