Abstract
Abstract. The aim of this study was to molecularly identify and assess the genetic diversity of 12 Mentha genotypes using, for the first time, two types of DNA markers simultaneously – ISSR (inter simple sequence repeats) and SCoT (start codon targeted). Selected genotypes representing various Mentha species and varieties were analyzed to determine the level of genetic similarity and phylogenetic relationships between them. The level of polymorphism obtained for ISSR markers was 71%, while for SCoT it was 88.7%. The obtained data were analyzed, allowing for the assessment of the level of genetic similarity and the construction of dendrograms illustrating the genetic structure of the studied population. Studies indicate that the use of SCoT markers enables the identification of the following genotypes: Plectranthus amboinicus (Lour.) Spreng, Mentha pulegium L., Mentha spicata L. cv. Moroccan, Mentha suaveolens Ehrh. var. variegata (pineapple mint), Mentha spicata L., and Mentha longifolia L. ISSR markers, due to the generation of only monomorphic and polymorphic bands, do not allow for the direct identification of any of the studied genotypes. Data from both marker systems indicate significant genetic diversity among the analyzed genotypes, which may be important for breeding programs and the conservation of genetic resources of the Mentha genus.
References
- Ahmad İ., Khan S.U., Khan A. et al., 2018. Reassessment of Mentha species from Kunhar River catchment using morphological and molecular markers. Anadolu J. Aegean Agric. Res. Inst. 28(1), 6–12.
- Choupani A., Shojaeiyan A., Maleki M., 2019. Genetic relationships of Iranian endemic mint spe-cies, Mentha mozaffariani Jamzad and some other mint species revealed by ISSR markers. Bi-oTechnologia 100, 19–28. https://doi.org/10.5114/bta.2019.83208
- Çelik C., Seraj N.A., Yasak S. et al., 2024. Molecular characterization and genetic relationships in different mint (Mentha L.) species with ISSR marker technique. Biol. Bull. 51(4), 959–968. https://doi.org/10.1134/S106235902360616X
- Collard B.C., Mackill D.J., 2009. Start codon targeted (SCoT) polymorphism: a simple novel DNA marker technique for generating gene targeted markers in plants. Plant Mol. Biol. Rep. 27, 86–93. https://doi.org/10.1007/s11105-008-0060-5
- Devi A., Iqbal T., Ahmad Wani I. et al., 2022. Assessment of variability among morphological and molecular characters in wild populations of mint [Mentha longifolia (L.) L.] germplasm. Saudi J. Biol. Sci. 29, 3528–3538. https://doi.org/10.1016/j.sjbs.2022.02.013
- Dorman H.D., Koşar M., Kahlos K. et al., 2013. Antioxidant properties and composition of aqueous extracts from Mentha species, hybrids, varieties, and cultivars. J. Agric. Food Chem. 51, 4563–4569. https://doi.org/10.1021/jf034108k
- Doyle J.J., Doyle J.L., 1987. A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem. Bull. 19, 11–15.
- Fukui Y., Saito M., Nakamura N. et al., 2022. Classification of Southeast Asian mints (Mentha spp.) based on simple sequence repeat markers. Breed. Sci. 72, 181–187. https://doi.org/10.1270/ jsbbs.21058
- Gobert V., Moja S., Colson M. et al., 2002. Hybridization in the section Mentha (Lamiaceae) in-ferred from AFLP markers. Am. J. Bot. 89, 2017–2023. https://doi.org/10.3732/ajb.89.12.2017
- Hammer Ø., Harper D.A.T., Ryan P.D., 2001. Past: Paleontological statistics software package for education and data analysis. Palaeontol. Electron. 4, 9.
- Heylen O.C.G., Debortoli N., Marescaux J. et al., 2021. A revised phylogeny of the Mentha spicata clade reveals cryptic species. Plants 10, 819. https://doi.org/10.3390/plants10040819
- Ibrahim H.M., 2017. Assessment of genetic diversity and relationships of five Mentha species using RAPD marker. Curr. Sci. Int. 6, 271–277.
- Jędrzejczyk I., Rewers M., 2018. Genome size and ISSR markers for Mentha L. (Lamiaceae) genetic diversity assessment and species identification. Ind. Crops Prod. 120, 171–179. https://doi.org/10.1016/j.indcrop.2018.04.062
- Khan N., Singh S., Singh Dhawan S., 2017. Development of species specific SCoT markers and analysis of genetic diversity among Mentha genotypes. Int. J. Innov. Sci. Engineer. Technol. 4, 2348–7968.
- Khanuja S.P.S., Shasany A.K., Srivastava A. et al., 2000. Assessment of genetic relationships in Mentha species. Euphytica 111, 121–125. https://doi.org/10.1023/A:1003829512956
- Kiełtyka Dadasiewicz A., Okoń S., Ociepa T. et al., 2017. Morphological and genetic diversity among peppermint (Mentha × piperita L.) cultivars. Acta Sci. Pol. Hortorum Cultus 16, 151–161. https://doi.org/10.24326/asphc.2017.3.15
- Lawrence B.M., 2006. Mint. The Genus Mentha. CRC Press, Boca Raton. https://doi.org/10.1201/ 9780849307980
- Malik R.H., Shah S.M., Khan A.R. et al., 2019. Evaluation of sequence related amplified polymor-phic markers for genetic characterization of Mentha species. Phillipine J. Crop Sci. 44, 71–76.
- Mkaddem M., Bouajila J., Ennajar M. et al., 2009. Chemical composition and antimicrobial and antioxidant activities of Mentha (longifolia L. and viridis) essential oils. J. Food Sci. 74, M358–M363. https://doi.org/10.1111/j.1750-3841.2009.01272.x
- Momeni S., Shiran B., Razmjoo K., 2006. Genetic variation in Iranian mints on the bases of RAPD analysis. Pak. J. Biol. Sci. 9, 1898–1904. https://doi.org/10.3923/pjbs.2006.1898.1904
- Moshrefi Araghi A., Nemati H., Azizi M. et al., 2021. Association of genetic structure and diversity in Iranian wild germplasms of Mentha longifolia L. based on phenotypical, biochemical, and molecular markers. Chem. Biodivers. 18, e2001044. https://doi.org/10.1002/cbdv.202001044
- Naseem I., Khan M.A., Habib U. et al., 2025. Morphological profiling and DNA barcoding revealed genetic diversity and phylogeny of Mentha species cultivated in Pakistan. Genet. Resourc. Crop Evol. 72(3), 29772995. https://doi.org/10.1007/s10722-024-02140-x
- Nei M., Li W., 1979. Mathematical model for studying genetic variation in terms of restriction endo-nucleases. Proc. Natl. Acad. Sci. USA 76, 5269–5273.
- Panjeshahin Z., Sharifi Sirchi G., Samsampour D., 2018. Genetic and morphological diversity of wild mint Mentha longifolia (L.) Hudson subsp. noeana (Briq.) Briq. in south and southeast-ern Iran. J. Med. Plants By-products 7(1), 105–115. https://doi.org/10.22092/jmpb.2018.116741
- Rodrigues L., van den Berg C., Póvoa O. et al., 2013. Low genetic diversity and significant structur-ing in the endangered Mentha cervina populations and its implications for conservation. Bio-chem. Syst. Ecol. 50, 51–61. https://doi.org/10.1016/j.bse.2013.03.007
- Sabboura D., Yacoub R., Lawand S., 2016. Assessment of genetic relationships among Mentha species. Int. J. ChemTech Res. 9, 462–468. https://doi.org/10.1023/A:1003829512956
- Salama A.M., Osman E.A., El Tantawy A.A., 2019. Taxonomical studies on four Mentha species grown in Egypt through morpho anatomical characters and SCoT genetic markers. Plant Arch. 19, 2273–2286.
- Silva D., Vieira R., Alves R. et al., 2006. Mint (Mentha spp.) germplasm conservation in Brazil. Rev. Bras. Pl. Med. 8, 27–31.
- Sofyalıoğlu E., Sevindik E., Gübeş İ. et al., 2025. Phylogenetic analysis of endemic Sideritis L. spp. (Lamiaceae) in Türkiye based on chloroplast trnL-F, matK, and rbcL DNA sequences. Genet. Resourc. Crop Evol. 72(4), 4381–4391. https://doi.org/10.1007/s10722-024-02225-7
- Smolik M., Rzepka Plevnes D., Jadczak D. et al., 2007. Morphological and genetic variability of chosen Mentha species. Herba Pol. 53, 90–97.
- Soilhi Z., Trindade H., Vicente S. et al., 2020. Assessment of the genetic diversity and relationships of a collection of Mentha spp. in Tunisia using morphological traits and ISSR markers. J. Hor-tic. Sci. Biotechnol. 95, 483–495. https://doi.org/10.1080/14620316.2019.1702482
- Thakur V.V., Tiwari S., Tripathi N. et al., 2016. DNA barcoding and phylogenetic analyses of Mentha species using rbcL sequences. Ann. Phytomed. 5(1), 59–62
- Vining K.J., Pandelova I., Hummer K. et al., 2019. Genetic diversity survey of Mentha aquatica L. and Mentha suaveolens Ehrh., mint crop ancestors. Genet. Resour. Crop Evol. 66, 825–845. https://doi.org/10.1007/s10722-019-00750-4
- Vining K.J., Pandelova I., Lange I. et al., 2022. Chromosome level genome assembly of Mentha longifolia L. reveals gene organization underlying disease resistance and essential oil traits. G3 Genes Genomes Genet. 12(8), jkac112. https://doi.org/10.1093/g3journal/jkac112
Downloads
Download data is not yet available.
-
Maja Bryk,
Anna Słowińska-Jurkiewicz,
Beata Kołodziej,
Changes of pore orientation in soil lessive caused by tillage measures
,
Agronomy Science: Vol. 60 (2005)
-
Krzysztof Orzech,
Marek Marks,
Ewa Dragańska,
Arkadiusz Stępień,
Yields of winter wheat in relation to weather conditions and different methods of cultivation of average soil
,
Agronomy Science: Vol. 64 No. 4 (2009)
-
NATALIA A. LYKOVA,
ALEXANDER I. POPOV,
DINA I. ALEXEEVA,
The influence of edaphic and hydrothermal factors on the properties of maternal plants, seeds and seedlings properties of spring wheat and barley cultivars
,
Agronomy Science: Vol. 62 No. 2 (2007)
-
Krzysztof Orzech,
Marek Marks,
Janusz Nowicki,
Assessment of energy input for three methods of medium soil cultivation
,
Agronomy Science: Vol. 59 No. 3 (2004)
-
Antoni Bombik,
Katarzyna Rymuza,
Tomasz Olszewski,
Multidimensional assessment of yield and quality of starchy potato cultivars
,
Agronomy Science: Vol. 78 No. 4 (2023)
-
Magdalena Kapłan,
Sylvain Pluchon,
Kamila Klimek,
Assessment of the impact of growth biostimulants on the effects of stimulating branching in maiden apple tree
,
Agronomy Science: Vol. 80 No. 4 (2025)
-
DOROTA GAWĘDA,
CEZARY A. KWIATKOWSKI,
Yield of spring wheat grown in short-term monoculture depending on catch crop and weed control method
,
Agronomy Science: Vol. 67 No. 2 (2012)
-
Barbara Kołodziej,
The effect of the term of plantation establishment, rejuvenating ploughing and Asahi SL application in peppermint culture
,
Agronomy Science: Vol. 63 No. 4 (2008)
-
Maciej Dobrowolski,
Jarosław Proćków,
Magdalena Zatoń-Dobrowolska,
Monika Kowalska-Góralska,
Changes in the composition of meadow and forest vegetation as a result of extensive grazing of Polish Konik
,
Agronomy Science: Vol. 78 No. 2 (2023)
-
ZBIGNIEW PAWLONKA,
JANINA SKRZYCZYŃSKA,
Ontogenesis of Apera spica-venti in winter triticale
,
Agronomy Science: Vol. 62 No. 2 (2007)
<< < 6 7 8 9 10 11 12 13 14 15 > >>
You may also start an advanced similarity search for this article.