Agronomy Science, przyrodniczy lublin, czasopisma up, czasopisma uniwersytet przyrodniczy lublin
Skip to main navigation menu Skip to main content Skip to site footer

Vol. 80 No. 4 (2025)

Articles

Molecular identification and genetic diversity assessment of Mentha genotypes using SCoT and ISSR DNA markers.

DOI: https://doi.org/10.24326/as.2025.5594
Submitted: September 1, 2025
Published: 31.12.2025

Abstract

Abstract. The aim of this study was to molecularly identify and assess the genetic diversity of 12 Mentha genotypes using, for the first time, two types of DNA markers simultaneously – ISSR (inter simple sequence repeats) and SCoT (start codon targeted). Selected genotypes representing various Mentha species and varieties were analyzed to determine the level of genetic similarity and phylogenetic relationships between them. The level of polymorphism obtained for ISSR markers was 71%, while for SCoT it was 88.7%. The obtained data were analyzed, allowing for the assessment of the level of genetic similarity and the construction of dendrograms illustrating the genetic structure of the studied population. Studies indicate that the use of SCoT markers enables the identification of the following genotypes: Plectranthus amboinicus (Lour.) Spreng, Mentha pulegium L., Mentha spicata L. cv. Moroccan, Mentha suaveolens Ehrh. var. variegata (pineapple mint), Mentha spicata L., and Mentha longifolia L. ISSR markers, due to the generation of only monomorphic and polymorphic bands, do not allow for the direct identification of any of the studied genotypes. Data from both marker systems indicate significant genetic diversity among the analyzed genotypes, which may be important for breeding programs and the conservation of genetic resources of the Mentha genus.

References

  1. Ahmad İ., Khan S.U., Khan A. et al., 2018. Reassessment of Mentha species from Kunhar River catchment using morphological and molecular markers. Anadolu J. Aegean Agric. Res. Inst. 28(1), 6–12.
  2. Choupani A., Shojaeiyan A., Maleki M., 2019. Genetic relationships of Iranian endemic mint spe-cies, Mentha mozaffariani Jamzad and some other mint species revealed by ISSR markers. Bi-oTechnologia 100, 19–28. https://doi.org/10.5114/bta.2019.83208
  3. Çelik C., Seraj N.A., Yasak S. et al., 2024. Molecular characterization and genetic relationships in different mint (Mentha L.) species with ISSR marker technique. Biol. Bull. 51(4), 959–968. https://doi.org/10.1134/S106235902360616X
  4. Collard B.C., Mackill D.J., 2009. Start codon targeted (SCoT) polymorphism: a simple novel DNA marker technique for generating gene targeted markers in plants. Plant Mol. Biol. Rep. 27, 86–93. https://doi.org/10.1007/s11105-008-0060-5
  5. Devi A., Iqbal T., Ahmad Wani I. et al., 2022. Assessment of variability among morphological and molecular characters in wild populations of mint [Mentha longifolia (L.) L.] germplasm. Saudi J. Biol. Sci. 29, 3528–3538. https://doi.org/10.1016/j.sjbs.2022.02.013
  6. Dorman H.D., Koşar M., Kahlos K. et al., 2013. Antioxidant properties and composition of aqueous extracts from Mentha species, hybrids, varieties, and cultivars. J. Agric. Food Chem. 51, 4563–4569. https://doi.org/10.1021/jf034108k
  7. Doyle J.J., Doyle J.L., 1987. A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem. Bull. 19, 11–15.
  8. Fukui Y., Saito M., Nakamura N. et al., 2022. Classification of Southeast Asian mints (Mentha spp.) based on simple sequence repeat markers. Breed. Sci. 72, 181–187. https://doi.org/10.1270/ jsbbs.21058
  9. Gobert V., Moja S., Colson M. et al., 2002. Hybridization in the section Mentha (Lamiaceae) in-ferred from AFLP markers. Am. J. Bot. 89, 2017–2023. https://doi.org/10.3732/ajb.89.12.2017
  10. Hammer Ø., Harper D.A.T., Ryan P.D., 2001. Past: Paleontological statistics software package for education and data analysis. Palaeontol. Electron. 4, 9.
  11. Heylen O.C.G., Debortoli N., Marescaux J. et al., 2021. A revised phylogeny of the Mentha spicata clade reveals cryptic species. Plants 10, 819. https://doi.org/10.3390/plants10040819
  12. Ibrahim H.M., 2017. Assessment of genetic diversity and relationships of five Mentha species using RAPD marker. Curr. Sci. Int. 6, 271–277.
  13. Jędrzejczyk I., Rewers M., 2018. Genome size and ISSR markers for Mentha L. (Lamiaceae) genetic diversity assessment and species identification. Ind. Crops Prod. 120, 171–179. https://doi.org/10.1016/j.indcrop.2018.04.062
  14. Khan N., Singh S., Singh Dhawan S., 2017. Development of species specific SCoT markers and analysis of genetic diversity among Mentha genotypes. Int. J. Innov. Sci. Engineer. Technol. 4, 2348–7968.
  15. Khanuja S.P.S., Shasany A.K., Srivastava A. et al., 2000. Assessment of genetic relationships in Mentha species. Euphytica 111, 121–125. https://doi.org/10.1023/A:1003829512956
  16. Kiełtyka Dadasiewicz A., Okoń S., Ociepa T. et al., 2017. Morphological and genetic diversity among peppermint (Mentha × piperita L.) cultivars. Acta Sci. Pol. Hortorum Cultus 16, 151–161. https://doi.org/10.24326/asphc.2017.3.15
  17. Lawrence B.M., 2006. Mint. The Genus Mentha. CRC Press, Boca Raton. https://doi.org/10.1201/ 9780849307980
  18. Malik R.H., Shah S.M., Khan A.R. et al., 2019. Evaluation of sequence related amplified polymor-phic markers for genetic characterization of Mentha species. Phillipine J. Crop Sci. 44, 71–76.
  19. Mkaddem M., Bouajila J., Ennajar M. et al., 2009. Chemical composition and antimicrobial and antioxidant activities of Mentha (longifolia L. and viridis) essential oils. J. Food Sci. 74, M358–M363. https://doi.org/10.1111/j.1750-3841.2009.01272.x
  20. Momeni S., Shiran B., Razmjoo K., 2006. Genetic variation in Iranian mints on the bases of RAPD analysis. Pak. J. Biol. Sci. 9, 1898–1904. https://doi.org/10.3923/pjbs.2006.1898.1904
  21. Moshrefi Araghi A., Nemati H., Azizi M. et al., 2021. Association of genetic structure and diversity in Iranian wild germplasms of Mentha longifolia L. based on phenotypical, biochemical, and molecular markers. Chem. Biodivers. 18, e2001044. https://doi.org/10.1002/cbdv.202001044
  22. Naseem I., Khan M.A., Habib U. et al., 2025. Morphological profiling and DNA barcoding revealed genetic diversity and phylogeny of Mentha species cultivated in Pakistan. Genet. Resourc. Crop Evol. 72(3), 29772995. https://doi.org/10.1007/s10722-024-02140-x
  23. Nei M., Li W., 1979. Mathematical model for studying genetic variation in terms of restriction endo-nucleases. Proc. Natl. Acad. Sci. USA 76, 5269–5273.
  24. Panjeshahin Z., Sharifi Sirchi G., Samsampour D., 2018. Genetic and morphological diversity of wild mint Mentha longifolia (L.) Hudson subsp. noeana (Briq.) Briq. in south and southeast-ern Iran. J. Med. Plants By-products 7(1), 105–115. https://doi.org/10.22092/jmpb.2018.116741
  25. Rodrigues L., van den Berg C., Póvoa O. et al., 2013. Low genetic diversity and significant structur-ing in the endangered Mentha cervina populations and its implications for conservation. Bio-chem. Syst. Ecol. 50, 51–61. https://doi.org/10.1016/j.bse.2013.03.007
  26. Sabboura D., Yacoub R., Lawand S., 2016. Assessment of genetic relationships among Mentha species. Int. J. ChemTech Res. 9, 462–468. https://doi.org/10.1023/A:1003829512956
  27. Salama A.M., Osman E.A., El Tantawy A.A., 2019. Taxonomical studies on four Mentha species grown in Egypt through morpho anatomical characters and SCoT genetic markers. Plant Arch. 19, 2273–2286.
  28. Silva D., Vieira R., Alves R. et al., 2006. Mint (Mentha spp.) germplasm conservation in Brazil. Rev. Bras. Pl. Med. 8, 27–31.
  29. Sofyalıoğlu E., Sevindik E., Gübeş İ. et al., 2025. Phylogenetic analysis of endemic Sideritis L. spp. (Lamiaceae) in Türkiye based on chloroplast trnL-F, matK, and rbcL DNA sequences. Genet. Resourc. Crop Evol. 72(4), 4381–4391. https://doi.org/10.1007/s10722-024-02225-7
  30. Smolik M., Rzepka Plevnes D., Jadczak D. et al., 2007. Morphological and genetic variability of chosen Mentha species. Herba Pol. 53, 90–97.
  31. Soilhi Z., Trindade H., Vicente S. et al., 2020. Assessment of the genetic diversity and relationships of a collection of Mentha spp. in Tunisia using morphological traits and ISSR markers. J. Hor-tic. Sci. Biotechnol. 95, 483–495. https://doi.org/10.1080/14620316.2019.1702482
  32. Thakur V.V., Tiwari S., Tripathi N. et al., 2016. DNA barcoding and phylogenetic analyses of Mentha species using rbcL sequences. Ann. Phytomed. 5(1), 59–62
  33. Vining K.J., Pandelova I., Hummer K. et al., 2019. Genetic diversity survey of Mentha aquatica L. and Mentha suaveolens Ehrh., mint crop ancestors. Genet. Resour. Crop Evol. 66, 825–845. https://doi.org/10.1007/s10722-019-00750-4
  34. Vining K.J., Pandelova I., Lange I. et al., 2022. Chromosome level genome assembly of Mentha longifolia L. reveals gene organization underlying disease resistance and essential oil traits. G3 Genes Genomes Genet. 12(8), jkac112. https://doi.org/10.1093/g3journal/jkac112

Downloads

Download data is not yet available.

Similar Articles

<< < 4 5 6 7 8 9 10 11 12 13 > >> 

You may also start an advanced similarity search for this article.