Agronomy Science, przyrodniczy lublin, czasopisma up, czasopisma uniwersytet przyrodniczy lublin
Skip to main navigation menu Skip to main content Skip to site footer

Vol. 73 No. 3 (2018)

Articles

Effects of lead and cadmium ions on water balance parameters and content of photosynthetic pigments of prairie cordgrass (Spartina pectinata Bosk ex Link.)

DOI: https://doi.org/10.24326/asx.2018.3.1
Submitted: November 29, 2018
Published: 2018-11-29

Abstract

The aim of the work was to assess the impact of a varied level of soil contamination with lead and cadmium ions on selected physiological parameters of prairie cordgrass. The content of photosynthetic pigments in leaves (chlorophyll a, b, total chlorophyll and carotenoids) and water balance of plants on the basis of two indicators (RWC – relative water content in tissues and WSD – water saturation deficit) were determined. Pot-vegetative experiments were performed using a complete randomization method in a one-factor system. The factor in the first experiment was the level of soil contamination with lead (28.15, 56.30, 112.60 mg Pb · kg soil–1), in the second experiment – the level of soil contamination with cadmium (4.60, 10.00, 18.39 mg Cd · kg soil–1). The levels of soil contamination with lead did not influence the content of chlorophyll a, b and total chlorophyll in prairie cordgrass leaves. In the case of carotenoids, an increase in their content was demonstrated after introducing lead into the soil at the dose of 28.15 mg Pb · kg soil–1 compared to the control. Soil contamination with cadmium did not affect the content of chlorophyll a, total chlorophyll and carotenoids in the leaves of prairie cordgrass. The highest level of soil contamination with lead contributed to the reduction of chlorophyll b. Lead at doses of 56.30 and 112.60 mg · kg soil-1 caused deterioration in the water balance parameters of the prairie cordgrass. In the case of soil contamination with cadmium, this relationship was demonstrated only for the dose of 10.00 mg Cd · kg soil–1.

References

  1. Akinci I.E., Akinci S., Yilmaz K., 2010. Response of tomato (Solanum lycopersicum L.) to lead toxicity: Growth, element uptake, chlorophyll and water content. Afr. J. Agric. Res. 5(6), 416–423.
  2. Ali H., Khan E., Sajad M.A., 2013. Phytoremediation of heavy metals – concepts and applications. Chemosphere 91, 869–881.
  3. Aliu S., Gashi B., Rusinovci I., Fetahu S., Vataj R., 2013. Effects of some heavy metals in some morpho-physiological parameters in maize seedlings. Am. J. Biochem. Biotechn. 9(1), 27–33.
  4. Arena C., Figlioli F., Sorrentino M.C., Izzo L.G., Capozzi F., Giordano S., Spagnuolo V., 2017. Ultrastructural, protein and photosynthetic alterations induced by Pb and Cd in Cynara cardunculus L., and its potential for phytoremediation. Ecotox. Environ. Safe. 145, 83–89.
  5. Arnon D.J., Allen M.B., Whatley F., 1956. Photosynthesis by isolated chloroplast. IV General concept and comparison of three photochemical reactions. Biochem. Biophys. Acta 20, 449–461.
  6. Barceló J., Poschenrieder Ch., Andreu I., Gunsé B., 1986. Cadmium-induced decrease of water stress resistance in bush bean plants (Phaseolus vulgaris L. cv. Contender). I. Effects of Cd on water potential, relative water content and cell wall elasticity. J. Plant Physiol. 125(1–2), 17–25.
  7. Cambrolle J., Mateos-Naranjo E., Redondo-Gomez S., Luque T., Figueroa M.E., 2011. The role of two spartina species in phytostabilization and bioaccumulation of Co, Cr, and Ni in the Tinto–Odiel estuary (SW Spain). Hydrobiologia 671, 95–103.
  8. Curado G., Rubio-Casal A.E., Figueroa E., Castillo J.M., 2014. Potential of Spartina maritima in restored salt marshes for phytoremediation of metals in a highly polluted estuary. Int. J. Phytorem. 16, 1209–1220.
  9. De Maria S., Puschenreiter M., Rivelli A.R., 2013. Cadmium accumulation and physiological response of sunflower plants to Cd during the vegetative growing cycle. Plant Soil Environ. 59(6), 254–261.
  10. Duzgoren-Aydin N.S., 2007. Sources and characteristics of lead pollution in the urban environment of Guangzhou. Sci. Total Environ. 385, 182–195.
  11. Dziubanek G., Baranowska R., Oleksiuk K., 2012. Metale ciężkie w glebach Górnego Śląska – problem przeszłości czy aktualne zagrożenie? [Heavy metals in the soils of Upper Silesia – a problem from the past or present hazard?]. J. Ecol. Health 16(4), 169–175.
  12. Gill L.W., Ring P., Casey B., Higgins N.M.P., Johston P.M., 2017. Long term heavy metal removal by a constructed wetland treating rainfall runoff from a motorway. Sci. Total Environ. 601–602, 32–44.
  13. Guo J., Thapa S., Voigt T., Rayburn A.L., Boe A., Lee D.K., 2015. Phenotypic and biomass yield variations in natural populations of prairie cordgrass (Spartina pectinata Link) in the US. Bioenerg. Res. 8, 1371–1383.
  14. Hager A., Mayer-Berthenrath T., 1966. Die Isolierung und quanttaive Bestimung der Carotenoide und Chlorophyll von Blatern, Algen und isolerten Chloroplasten mit Hilfe Dunnschichtchromatog-raphischer Methoden. Planta. Berlin 69, 198–217.
  15. Helios W., Kozak M., Malarz W., Kotecki A., 2014. Effects of sewage sludge application on the growth yield and chemical composition of prairie cordgrass (Spartina pectinata Link). J. Elem. 4, 1021–1036. DOI: 10.5601/jelem. 2014.19.3.725.
  16. Helios W., Malarz W., Kozak M., Kotecki A., 2015. Response of Prairie cordgrass (Spartina pectinata Link) to a residual effect of municipal sewage sludge application. Open Chem. 13, 1081–1090.
  17. Hou Y.Y., Liu X.Y., Zhang X.Y., Chen X., Tao K.Y., Chen X.P., Liang X., He C.Q., 2015. Iden-tification of Scirpus triqueter root exudates and the effects of organic acids on desorption and bioavailability of pyrene and lead in co-contaminated wetland soils. Environ. Sci. Pollut. Res. 22, 17780–17788.
  18. Järup L., Åkesson A., 2009. Current status of cadmium as an environmental health problem. Toxi-col. Appl. Pharmacol. 238, 201–208.
  19. Karantev A., Yordanova R., Janda T., Szalai G., Popova L., 2008. Treatment with salicylic acid decreases the effect of cadmium on photosynthesis in maize plants. J. Plant Physiol. 165, 920–931.
  20. Kastori R., Petrović M., Petrović N., 1992. Effect of excess lead, cadmium, copper and zinc on water relations in sunflower. J. Plant Nutr. 15(11), 2427–2439.
  21. Kim S., Rayburra A.L., Voigt T., Parrish A., Lee D.K., 2012. Salinity effects on germination and plant growth of prairie cordgrass and switchgrass. Bioenerg. Res. 5, 225–235.
  22. Korzeniowska J., Stanisławska-Glubiak E., 2015. Phytoremediation potential of Miscanthus × giganteus and Spartina pectinata in soil contaminated with heavy metals. Environ. Sci. Pollut. Res. Int. 22(15), 11648–11657.
  23. Kowalczyk-Juśko A., 2013. Biometryczne i energetyczne parametry spartiny preriowej (Spartina pectinata Link.) w trzech pierwszych latach wegetacji [Biometric and energetic parameters of cordgrass (Spartina pectinata Link.) in the first three years of growth]. Probl. Agr. Eng. 2(80), 69–77.
  24. Li C., Xiao B., Wang Q.H., Yao S.H., Wu J.Y., 2014. Phytoremediation of Zn and Cr-contaminated soil using two promising energy grasses. Water Air Soil Pollut. 225, 2027.
  25. Malinowska K., Mikiciuk M., Berdzik A., 2010. Zmiany wybranych parametrów fizjologicznych wierzby wiciowej (Salix viminalis L.) wywołane zróżnicowanym stężeniem kadmu w podłożu [Changes of selected physiological parameters of basket willow (Salix viminalis L.) caused by a differentiated concentration of cadmium in the medium]. Ochr. Środ. Zas. Nat. 42, 24–32.
  26. Montemayor M.B., Price J.S., Rochefort L., Boudreau S., 2008. Temporal variations and spatial patterns in saline and waterlogged peat fields. Environ. Exp. Bot. 62, 333–342.
  27. Nalla S., Hardaway C.J., Sneddon J., 2012. Phytoextraction of selected metals by the first and second growth seasons of Spartina alterniflora. Instrum. Sci. Technol. 40, 17–28.
  28. Ociepa E., Mrowiec M., Lach J., 2017. Influence of fertilization with sewage sludge-derived prep-aration on selected soil properties and prairie cordgrass yield. Environ. Res. 156, 775–780.
  29. Perfus-Barbeoch L., Leonhardt N., Vavasseur A., Forestier C., 2002. Heavy metal toxicity: cadmium permeates through calcium channels and disturbs the plant water status. Plant J. 32, 539–548.
  30. Pogrzeba M., Krzyżak J., Sas-Nowosielska A., Majtkowski W., Małkowski E., Kita A., 2010. A heavy metal environmental threat resulting from combustion of biofuels of plant origin. In: L.I. Simeonov, M.V.Kochubovski, B.G. Simeonova (eds). Environmental heavy metal pollution and effects on child mental development: Risk assessment and prevention strategies. Springer, 213–225.
  31. Pourrut B., Shahid M., Dumat C., Winterton P., Pinelli E., 2011. Lead uptake, toxicity, and detox-ification in plants. Rev. Environ. Contam. Toxicol. 213, 113–136.
  32. Redondo-Gómez S., 2013. Bioaccumulation of heavy metals in spartina. Funct. Plant Biol. 40, 913–921.
  33. Rehman Z.U., Khan S., Brusseau M.L., Shah M.T., 2017. Lead and cadmium contamination and exposure risk assessment via consumption of vegetables grown in agricultural soils of five-selected regions of Pakistan. Chemosphere 168, 1589–1596.
  34. Sayed S.S., 1997. Effect of cadmium and kinetin on transporation rate, stomatal opening and leaf relative water content in safflower plants. J. Islam. Acad. Sci. 10(3), 73–80.
  35. Sayed S.S., 1999. Effects of lead and kinetin on the growth, and some physiologicalcomponents of safflower. Plant Growth Regul. 29, 167–174.
  36. Seregin I.V., Ivanov V.B., 2001. Physiological aspects of cadmium and lead toxic effects on higher plants. Russ. J. Plant Physiol. 48, 523–544.
  37. Shu X., Yin L., Zhang Q., Wang W., 2012. Effect of Pb toxicity on leaf growth, antioxidant enzyme activities, and photosynthesis in cuttings and seedlings of Jatropha curcas L. Environ. Sci. Pollut. Res. 19, 893–902.
  38. Starck Z. 2002. Mechanizmy integracji procesów fotosyntezy i dystrybucji biomasy w niekorzyst-nych warunkach środowiska. Zesz. Prob. Post. Nauk Rol. 481, 113–123.
  39. Tezara W., Mitchall V., Driscoll S.P., Lawlor D.W., 2002. Effects of water deficit and its interaction with CO2supply on the biochemistry and physiology of photosynthesis in sunflower. J. Exp. Bot. 375, 1781–1791.
  40. Weiss J., Hondzo M., Biesboer D., Semmens M., 2006. Laboratory study of heavy metal phytore-mediation by three wetland macrophytes. Int. J. Phytorem. 8, 245–259.
  41. Yamasaki S., Dillenburg L.R., 1999. Measurements of leaf relative water content in Araucaria angustifolia. Rev. Bras. Fisiol. Veg. 11(2), 69–75.
  42. Yin D., Wang X., Chen C., Peng B., Tan C., Li H., 2016. Varying effect of biochar on Cd, Pb and As mobility in a multi-metal contaminated paddy soil. Chemosphere 152, 196–206.
  43. Zhang C., Guo J., Lee D.K., Anderson E., Huang H., 2015. Growth responses and accumulation of cadmium in switchgrass (Panicum virgatum L.) and prairie cordgrass (Spartina pectinate Link). RSC Adv. 5, 83700–83706.

Downloads

Download data is not yet available.

Similar Articles

1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.