Agronomy Science, przyrodniczy lublin, czasopisma up, czasopisma uniwersytet przyrodniczy lublin
Skip to main navigation menu Skip to main content Skip to site footer

Vol. 77 No. 2 (2022)

Articles

Effect of foliar fertilization with multicomponent fertilizers in form nanoparticle on the yield and quality of potato tubers

DOI: https://doi.org/10.24326/as.2022.2.7
Submitted: May 17, 2022
Published: 2022-07-27

Abstract

In the field experiments carried on light soil in 2018–2020 the effect of foliar fertilization of potato plants with Herbagreen Basic and Nano Active Forte multicomponent fertilizers on the yield and selected quality characteristics of potato tubers was determined. The fertilizers used for the research were nano-forms. Fertilizers were applied twice during the growing season of potato plants, at a dose of 2 kg ha–1, in the BBCH 20 and BBCH 59 phase. The foliar fertilization was carried out under the conditions mineral fertilization with nitrogen: 60, 120 and 180 kg N ha–1. The control object was without foliar fertilization. A significant increase in tuber yield was obtained (by 9.5%) and a greater share of large tubers in the yield after the application of nanofertilizers compared to the object without foliar fertilization. A significantly lower share of tubers with external defects in the yield was shown under the influence of the Nano Active Forte fertilizer compared to the Herbagreen Basic fertilizer. Significantly higher content of starch and vitamin C were found in tubers after applying the Herbagreen Basic fertilizer compared to the Nano Active Forte fertilizer. The highest yield of tubers, the content of starch, vitamin C and dry matter was obtained after the application of mineral nitrogen in the dose of 120 kg N ha–1. Along with increasing the dose of mineral nitrogen from 60 to 180 kg ha–1, a significant increase in the share of large tubers and with external defects.

References

  1. Abobatta W.F., 2018. Nanotechnology application in agriculture. Acta Sci. Agric. 2(6), 99–102.
  2. Ali N.S., Al-Juthery H.W.A., 2017. The application of nanotechnology for micronutrient in agricultural production (review article). Iraqi J. Agric. Sci., 48(4), 441–489. https://doi.org/10.36103/ijas.v48i4.355 DOI: https://doi.org/10.36103/ijas.v48i4.355
  3. Al-Juthery H.W.A., Ali N.S., Al-Taey D.K.A., Ali E.A.H.M., 2018. The impact of foliar application of nanofertilizer, seaweed and hypertonic on yield of potato. Plant Archives. 18(2), 2212–2207.
  4. Al-Zebari Y.I., Kahlel A.M.S., AL-Hamdany S.Y.H., 2021. Response of four potato (Solanum Tuberosum L.) varieties to four nano fertilizers. IOP Conf. Series: Earth and Environmental Science 761. DOI: https://doi.org/10.1088/1755-1315/761/1/012060
  5. Artyszak A., Gozdowski D., Kucińska K., 2014. The effect of foliar fertilization with marine calcite in sugar beet. Plant Soil Environ. 60, 413–417. https://doi.org/10.17221/451/2014-PSE DOI: https://doi.org/10.17221/451/2014-PSE
  6. Artyszak A., Gozdowski D., Kucińska K., 2016. The effect of calcium and silicon foliar fertilization in sugar beet. Sugar Technol. 18(1), 109–114. http://dx.doi.org/10.14199/ppp-2021-021 DOI: https://doi.org/10.1007/s12355-015-0371-4
  7. Azotany test 16971, https://merckmillipore.com [dostęp: 22.06.2022].
  8. Bac S., Koźmiński C., Rojek M., 1998. Agrometeorologia. PWN, Warszawa, pp. 274.
  9. Badr M.A., El-Tohamy W.A., Zaghloul A.M., 2012. Yield and water use efficiency of potato grown under different irrigation and nitrogen levels in an arid region. Agric. Water Manag. 110, 9–15. http://dx.doi.org/10.1016/j.agwat.2012.03.008 DOI: https://doi.org/10.1016/j.agwat.2012.03.008
  10. Baranowska A., 2018. Impact of growth biostimulators and herbicide on edible potato yield. Acta Agrophys. 25(4), 385–396. https://doi.org/10.31545/aagr/99211 DOI: https://doi.org/10.31545/aagr/99211
  11. Chaves M.M., Maroco J.P., Pereira J.S., 2003. Understanding plant response to drought – from genes to the whole plant. Funct. Plant Biol. 30(3), 239–264. https://doi.org/10.1071/fp02076 DOI: https://doi.org/10.1071/FP02076
  12. Cwalina-Ambroziak B., Głosek-Sobieraj M., Kowalska E., 2015. The effect of plant growth regulators on the incidence and severity of potato diseases. Pol. J. Natur. Sc. 30(1), 5–20.
  13. Głuska A., 2004. Wpływ zmiennego rozkładu opadów na cechy bulw ziemniaka (Solanum tuberosum L) w warunkach polowych oraz wyznaczenie okresu krytycznego wrażliwości na niedobór wody u odmian o różnej długości okresu wegetacji. Zesz. Probl. Post. Nauk Rol. 496, 217–227.
  14. Grudzińska M., Zgórska K., 2008. Wpływ warunków meteorologicznych na zawartość azotanów (V) w bulwach ziemniaka. Żywność. Nauka. Technol. Jakość 5(60), 98–106.
  15. Hijmans R.J., 2003. The effect of climate change on global potato production. Am. J. Potato Res. 80, 271–280. http://dx.doi.org/10.1007/BF02855363 DOI: https://doi.org/10.1007/BF02855363
  16. Janmohammadi M., Sabaghnia N., Nouraein M., Dashti S., 2015. Responses of potato (Solanum tuberosum L.) var. Agria to application of bio, bulk and nano-fertilizers. Ann. Univ. M. C. Sklodowska, C, 70(2), 57–67. DOI: https://doi.org/10.17951/c.2015.70.2.57
  17. Kołodziejczyk M., 2013. Fenotypowa zmienność plonowania, składu chemicznego oraz wybranych cech jakości bulw średnio późnych i późnych odmian ziemniaka jadalnego. Acta Agrophys. 20(3), 411–422. DOI: https://doi.org/10.24326/as.2014.3.1
  18. Kołodziejczyk M., 2014. Effect of nitrogen fertilization and microbial preparations on potato yielding. Plant Soil Environ. 60(8), 379–386. DOI: https://doi.org/10.17221/7565-PSE
  19. Levy D., Veilleux R.E., 2007. Adaptation of potato to high temperatures and salinity – a review. Am. J. Potato Res. 84, 487–506. https://doi.org/10.1007/BF02987885 DOI: https://doi.org/10.1007/BF02987885
  20. Luitel B.P., Khatri B.B., Choudhary D., Paudel B.P., Jung-Sook S., Hur O.-S., Baek H.J., Cheol K.H., Yul R.K., 2015. Growth and yield characters of potato genotypes grown in drought and irrigated conditions of Nepal. Int. J. Appl. Sci. Biotechnol. 3(3), 513–519. https://doi.org/10.3126/ijasbt.v3i3.13347 DOI: https://doi.org/10.3126/ijasbt.v3i3.13347
  21. Lutomirska B., Jankowska J., 2012. Występowanie deformacji i spękań bulw ziemniaka w zależności od warunków meteorologicznych i odmiany. Biul. IHAR 266, 131–142.
  22. Mahmoud A.W.M., Abdeldaym E.A., Abdelaziz S.M., Mohamed B.I.E., Mottaleb S.A., 2020. Synergetic effects of zinc, boron, silicon, and zeolite nanoparticles on confer tolerance in potato plants subjected to salinity. Agronomy 10(1), 19. https://doi.org/10.3390/agronomy10010019 DOI: https://doi.org/10.3390/agronomy10010019
  23. Maria C.D., Carlos M., Morris S., Ryan W., Yasir S., 2010. Nanotechnology in fertilizers. Nature Nanotechnol. 5(2), 91. http://dx.doi.org/10.1038/nnano.2010.2 DOI: https://doi.org/10.1038/nnano.2010.2
  24. Mijweil A.K., Abboud A.K., 2018. Growth and yield of potato (Solanum tuberosum L.) as influenced by nano-fertilizers and different planting dates. Res. Crop. 19(4), 649–654. http://dx.doi.org/10.31830/2348-7542.2018.0001.42 DOI: https://doi.org/10.31830/2348-7542.2018.0001.42
  25. Monneveux P., Ramirez D.A., Pino M.T., 2013. Drought tolerance in potato (S. tuberosum L.). Can we learn from drought tolerance research in cereals? Plant Sci. 205–206, 76–86. https://doi.org/10.1016/j.plantsci.2013.01.011 DOI: https://doi.org/10.1016/j.plantsci.2013.01.011
  26. Naderi M.R., Danesh-Shahraki A., 2013. Nanofertilizers and their roles in sustainable agriculture. Int. J. Agric. Crop Sci. 5(19), 2229–2232.
  27. Prajapati A., Patel C.K., Singh N., Jain S.K., Chongtham S.K., Maheshwari M.N., Patel R.N., 2016. Evaluation of seaweed extract on growth and yield of potato. Environ. Ecol. 34(2), 605–608.
  28. Rameshaiah G.N., Pallavi J., Shabham S., 2015. Nano fertilizers and nano sensors – an attempt for developing smart agriculture. Int. J. Eng. Res. Gen. Sci. 3(1), 314–320.
  29. Rutkowska U., 1981. Wybrane metody badania składu i wartości odżywczej żywności. PZWL, Warszawa, 294–295.
  30. Rymuza K., Radzka E., Lenartowicz T., 2015. Wpływ warunków środowiskowych na zawartość skrobi w bulwach odmian ziemniaka średnio wczesnego. Acta Agrophys. 22(3), 279–289.
  31. Siddiqui M.H., Al-Whaibi M.H., Firoz M., Al-Khaishany M.Y., 2015. Role of nanoparticles in plants. In: Siddiqui M., Al-Whaibi M., Mohammad F. (eds). Nanotechnology and plant sciences. Springer, Cham. https://doi.org/10.1007/978-3-319-14502-0_2 DOI: https://doi.org/10.1007/978-3-319-14502-0
  32. Trawczyński C., 2013. Wpływ dolistnego nawożenia preparatem Herbagreen na plonowanie ziemniaków. Ziemniak Pol. 2, 29–33.
  33. Trawczyński C., 2020. Wpływ biostymulatorów na plon i jakość bulw ziemniaka uprawianego w warunkach suszy i wysokiej temperatury. Biul. IHAR 289, 11–19. DOI: https://doi.org/10.37317/biul-2020-0017
  34. Trawczyński C., 2021. Ocena plonowania i jakości bulw po aplikacji dolistnej krzemu i mikroelementów. Agron. Sci. 76(1), 9–20. https://doi.org/10.24326/as.2021.1.1 DOI: https://doi.org/10.24326/as.2021.1.1
  35. Wierzbicka A., Mazurczyk W., Wroniak J., 2008. Wpływ nawożenia azotem i terminu zbioru na plon i wybrane cechy jakości bulw wczesnych odmian ziemniaka. Zesz. Probl. Post. Nauk Rol. 530, 207–216.
  36. Wierzbowska J., Cwalina-Ambroziak B., Głosek-Sobieraj M., Sienkiewicz S., 2015. Effect of biostimulators on yield and selected chemical properties of potato tubers. J. Elem. 20(3), 757–768. https://doi.org/10.5601/jelem.2014.19.4.799 DOI: https://doi.org/10.5601/jelem.2014.19.4.799
  37. WRB, 2014. World reference database for soil resources 2014. International soil classification system for naming soil and creating legends for soil maps. Word Soil Resources Raport 106, pp. 192.

Downloads

Download data is not yet available.

Similar Articles

1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.