Agronomy Science, przyrodniczy lublin, czasopisma up, czasopisma uniwersytet przyrodniczy lublin
Skip to main navigation menu Skip to main content Skip to site footer

Vol. 77 No. 3 (2022)

Articles

The influence of agricultural practices on yield and weed infestation of winter triticale

DOI: https://doi.org/10.24326/as.2022.3.12
Submitted: August 26, 2022
Published: 2022-10-28

Abstract

This study aimed to evaluate grain yield and weed infestation of winter triticale grown in various cropping and tillage systems. The first order factor studied was the cropping systems (CS): (1) crop rotation A (CR-A): peas – winter barley – winter triticale; (2) crop rotation B (CR-B): lupin – winter wheat – winter triticale; and (3) winter triticale monoculture (MON). The second order factor included tillage systems (TS): (a) conventional (CT); (b) reduced (RT); and (c) no-tillage (NT). A significantly higher triticale grain yield was recorded in CR-A and CR-B than in MON, and also in CT than in RT and NT, due to higher spike number per 1 m2, grain weight per spike, and 1000 grain weight. The weed community formed in triticale crop was mainly represented by short-lived species. A higher weed number per 1 m2 was determined in CR-A and MON than in CR-B as well as in RT than in CT and NT. In turn, weeds produced a higher air-dry weight of weeds in MON than in CR-A
and CR-B, and also in RT than in CT and NT. The tillage system affected the weed contribution in particular levels of winter triticale crop, with the lower-level and middle-level species prevailing in CT and RT, and the middle-level and upper-level ones in NT.

References

  1. Adeux G., Vieren E., Carlesi S., Bàrberi P., Munier-Jolain N., Cordeau S., 2019. Mitigating crop yield losses through weed diversity. Nat. Sustain. 2, 1018–1026. http://dx.doi.org/10.1038/s41893-019-0415-y DOI: https://doi.org/10.1038/s41893-019-0415-y
  2. Bobryk-Mamczarz A., Rachoń L., Kiełtyka-Dadasiewicz A., Szydłowska-Tutaj M., Lewko P., Woźniak A., 2022. Plonowanie i jakość wybranych gatunków i odmian pszenicy makaronowej. Cz. II. Wartość technologiczna ziarna [Yielding and quality of selected species and cultivars of pasta wheat. Part. II. Technological value of grain]. Agron. Sci. 77(1), 65–78. http://dx.doi.org/10.24326/as.2022.1.6 DOI: https://doi.org/10.24326/as.2022.1.6
  3. Dębska B., Jaskulska I., Jaskulski D., 2020. Method of tillage with the factor determining the quality of organic matter. Agronomy 10(9), 1250. http://dx.doi.org/10.3390/agronomy10091250 DOI: https://doi.org/10.3390/agronomy10091250
  4. FAO, 2015. World reference base for soil resources 2014. International soil classification system for naming soils and creating legends for soil maps. Update 2015. World Soil Resources Reports 106. FAO, Rome. https://www.fao.org/3/i3794en/I3794en.pdf [date of access: 10.12.2015].
  5. Feledyn-Szewczyk B., Smagacz J., Kwiatkowski C.K., Harasim E., Woźniak A., 2020. Weed flora and soil seed bank composition as affected by tillage system in three-year crop rotation. Agriculture 10(5), 186. http://dx.doi.org/10.3390/agriculture10050186 DOI: https://doi.org/10.3390/agriculture10050186
  6. Fracchiolla M., Stellacci A.M., Cazzato E., Tedone L., Alhajj Ali S., De Mastro G., 2018. Effects of conservative tillage and nitrogen management on weed seed bank after a seven-year durum wheat – faba bean rotation. Plants 7(4), 82. http://dx.doi.org/10.3390/plants7040082 DOI: https://doi.org/10.3390/plants7040082
  7. Gruber S., Claupein W., 2009. Effect of tillage intensity on weed infestation in organic farming. Soil Till. Res. 105(1), 104–111. http://dx.doi.org/10.1016/j.still.2009.06.001 DOI: https://doi.org/10.1016/j.still.2009.06.001
  8. Heap I., Duke S.O., 2018. Overview of glyphosate-resistant weeds worldwide. Pest Manag. Sci. 74, 1040–1049. http://dx.doi.org/10.1002/ps.4760 DOI: https://doi.org/10.1002/ps.4760
  9. Hernández Plaza E., Navarrete L., González-Andújar J.L., 2015. Intensity of soil disturbance shapes response trait diversity of weed communities: The long-term effects of different tillage systems. Agric. Ecosyst. Environ. 207, 101–108. http://dx.doi.org/10.1016/j.agee.2015.03.031 DOI: https://doi.org/10.1016/j.agee.2015.03.031
  10. Koning L.A., de Mol F., Gerowitt B., 2019. Effects of management by glyphosate or tillage on the weed vegetation in a field experiment. Soil Till. Res. 186, 79–86. http://dx.doi.org/10.1016/j.still.2018.10.012 DOI: https://doi.org/10.1016/j.still.2018.10.012
  11. Kumar V., Mahajan G., Dahiya S., Chauhan B.S., 2020. Challenges and opportunities for weed management in no-till farming systems. In: Y. Dang, R.C. Dalal, N.W. Menzies (eds.), Notill farming systems for sustainable agriculture. Springer, Cham, 107–125. https://doi.org/10.1007/978-3-030-46409-7_7 DOI: https://doi.org/10.1007/978-3-030-46409-7_7
  12. MacLaren C., Storkey J., Menegast A., Metcalfe H., Dehnen-Schmutz K., 2020. An ecological future for weed science to sustain crop production and the environment. A review. Agron. Sustain. Dev. 40, 24. http://dx.doi.org/10.1007/s13593-020-00631-6 DOI: https://doi.org/10.1007/s13593-020-00631-6
  13. Meier U. (ed.), 2001. Growth stages of mono-and dicotyledonous plants, 2nd. ed. Federal Biological Research Centre for Agriculture and Forestry. https://www.politicheagricole.it/flex/AppData/WebLive/Agrometeo/MIEPFY800/BBCHengl2001.pdf [date of access: 15.01.2016].
  14. Panasiewicz K., Faligowska A., Szymańska G., Szukała J., Ratajczak K., Sulewska H., 2020. The effect of various tillage systems on productivity of narrow-leaved lupin-winter wheat-winter triticale-winter barley rotation. Agronomy 10(2), 304. https://doi.org/10.3390/agronomy10020304 DOI: https://doi.org/10.3390/agronomy10020304
  15. Pranagal J., Woźniak A., 2021. 30 years of wheat monoculture and reduced tillage and physical condition of Rendzic Phaeozem. Agric. Water Manag. 243, 106408. http://dx.doi.org/10.1016/j.agwat.2020.106408 DOI: https://doi.org/10.1016/j.agwat.2020.106408
  16. Rachoń L., Bobryk-Mamczarz A., Kiełtyka-Dadasiewicz A., Woźniak A., Stojek Z., Zajdel-Stępień P., 2022. Plonowanie i jakość wybranych gatunków i odmian pszenicy makaronowej. Cz. I. Plonowanie [Yielding and quality of selected speciesand cultivarsof pasta wheat. Part I. Yielding]. Agron. Sci. 77, 53–63. http://dx.doi.org/10.24326/as.2022.1.5 DOI: https://doi.org/10.24326/as.2022.1.5
  17. Sanginés de Cárcer P., Sinaj S., Santonja M., Fossati D., Jeangros B., 2019. Long-term effects of crop succession, soil tillage and climate on wheat yield and soil properties. Soil Till. Res. 190, 209–219. https://doi.org/10.1016/j.still.2019.01.012 DOI: https://doi.org/10.1016/j.still.2019.01.012
  18. Santín-Montanyá M.I., Martín-Lammerding D., Zambranab E., Tenorio J.L., 2016. Management of weed emergence and weed seed bank in response to different tillage, cropping systems and selected soil properties. Soil Till. Res. 161, 38–46. http://dx.doi.org/10.1016/j.still.2016.03.007 DOI: https://doi.org/10.1016/j.still.2016.03.007
  19. Schwartz-Lazaro L.M., Copes J.T., 2019. A review of the soil seedbank from a weed scientists perspective. Agronomy 9, 369. https://doi.org/10.3390/agronomy9070369 DOI: https://doi.org/10.3390/agronomy9070369
  20. Skuodiene R., Repšienė R., 2009. The effects of organic fertilisers and liming on segetal flora in a sustainable crop rotation on an acid soil. Zemdirbyste, 96, 154–169.
  21. Skuodiene R., Karcauskiene D., Repsiene R., Gintares S., 2018. Changes in the weed communities as affected by different primary soil tillage and deep loosening. Acta Agric. Scand. B Soil Plant Sci. 68, 643–648. http://dx.doi.org/10.1080/09064710.2018.1455219 DOI: https://doi.org/10.1080/09064710.2018.1455219
  22. Westwood J.H., Charudattan R., Duke S.O., Fennimore S.A., Marrone P., Slaughter D.C., Swanton C., Zollinger R., 2018. Weed management in 2050: Perspectives on the future of weed science. Weed Sci. 66, 275–285. http://dx.doi.org/10.1017/wsc.2017.78 DOI: https://doi.org/10.1017/wsc.2017.78
  23. Woźniak A., 2018. Effect of tillage system on the structure of weed infestation of winter wheat. Span. J. Agric. Res. 16, e1009. http://dx.doi.org/10.5424/sjar/2018164-12531 DOI: https://doi.org/10.5424/sjar/2018164-12531
  24. Woźniak A., 2020. Effect of various systems of tillage on winter barley yield, weed infestation and soil properties. Appl. Ecol. Environ. Res. 18, 3483–3496. http://dx.doi.org/10.15666/aeer/1802_34833496 DOI: https://doi.org/10.15666/aeer/1802_34833496
  25. Woźniak A., Soroka M., 2014. Effects of a 3-years reduced tillage on the yield and quality of grain and weed infestation of spring triticale (Triticosecale Wittmack). Int. J. Plant Prod. 8, 231–242.
  26. http://dx.doi.org/10.22069/IJPP.2014.1526
  27. Woźniak A., Soroka M., 2015. Structure of weed communities occurring in crop rotation and monoculture of cereals. Int. J. Plant Prod. 9, 487–506. http://dx.doi.org/10.22069/IJPP.2015.2227
  28. Woźniak A., Soroka M., 2017. Effect of tillage systems on weed infestation of durum wheat. Int. J. Plant Prod. 11, 453–460. http://dx.doi.org/10.22069/ijpp.2017.3551

Downloads

Most read articles by the same author(s)

1 2 > >> 

Similar Articles

1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.