Skip to main navigation menu Skip to main content Skip to site footer

Vol. 19 No. 6 (2020)

Articles

EFFECT OF PROCESSING ON ANTIOXIDANT AND ANTICHOLINESTERASE ACTIVITIES OF BILBERRY (Vaccinium myrtillus L.) JUICE

DOI: https://doi.org/10.24326/asphc.2020.6.10
Submitted: August 6, 2019
Published: 2020-12-31

Abstract

Bilberry fruit is a valuable source of many antioxidant and anticholinesterase agents. Thus, the aim of the present study was to determine the effect of heat treatment combined with enzyme preparations on the antioxidant and anticholinesterase activity of bilberry juices. Each bilberry juice efficiently ‘scavenged’ DPPH and ABTS radicals. The highest ability to remove DPPH radicals was found in pre-heated (80–90°C, 5 min) and non-heated (only 50–55°C, 2 h) juices obtained using Pectinex BE XXL. The pre-heating treatment caused an increase in the anti-acetylcholinesterase activity compared to non-heated juices, with the highest elevation (p < 0.05) recorded for juice produced using Panzym BE XXL. Similarly, the heat pretreatment caused an increase in the anti-butyrylcholinesterase activity in bilberry juices. The combined application of pre-heating and enzyme preparations during juice processing resulted in an increase in the antioxidant and anticholinesterase activities of the end juices.

References

  1. Aaby, K., Grimmer, S., Holtung, L. (2013). Extraction of phenolic compounds from bilberry (Vaccinium myrtillus L.) press residue: Effects on phenolic composition and cell proliferation. LWT-Food Sci. Technol., 54, 257–264. DOI: 10.1016/j.lwt.2013.05.031
  2. Ancillotti, C., Ciofi, L., Pucci, D., Sagona, E., Giordani, E., Biricolti, S., Gori, M., Petrucci, W.A., Giardi, F., Bartoletti, R., Chiuminatto, U., Orlandini, S., Mosti, S., Del Bubba, M. (2016). Polyphenolic profiles and antioxidant and antiradical activity of Italian berries from Vaccinium myrtillus L. and Vaccinium uliginosum L. subsp. gaultherioides (Bigelow) S.B. Young. Food Chem., 204, 176–184. DOI: 10.1016/j.foodchem.2016.02.106
  3. Ancillotti, C., Ciofi, L., Rossini, D., Chiuminatto, U., Stahl-Zeng, J., Orlandini, S., Furlanetto, S., Del Bubba, M. (2017). Liquid chromatographic/electrospray ionization quadrupole/time of flight tandem mass spectrometric study of polyphenolic composition of different Vaccinium berry species and their comparative evaluation. Anal. Bioanal. Chem., 409, 1347–1368. DOI: 10.1007/s00216-016-0067-y
  4. Ávila-Escalante, M.L., Coop-Gamas, F., Cervantes-Rodríguez, M., Méndez-Iturbide, D., Aranda-González, I.I. (2020). The effect of diet on oxidative stress and metabolic diseases-clinically controlled trials. J. Food Biochem., 44, e13191. DOI: 10.1111/jfbc.13191
  5. Borowiec, K., Szwajgier, D., Targoński, Z., Demchuk, O.M., Cybulska, J., Czernecki, T., Malik, A. (2014). Cholinesterase inhibitors isolated from bilberry fruit. J. Funct. Foods, 11, 313–321. DOI: 10.1016/j.jff.2014.10.008
  6. Borowiec, K., Matysek, M., Szwajgier, D., Biała, G., Kruk-Słomka, M., Szalak, R, Ziętek, J., Arciszewski, M.B, Targoński, Z. (2019). The influence of bilberry fruit on memory and the expression of parvalbumin in the rat hippocampus. Pol. J. Vet. Sci., 22, 481–487. DOI: 10.24425/pjvs.2019.129973
  7. Brand-Williams, W., Cuvelier, M.E., Berset, C. (1995). Use of free radical method to evaluate antioxidant activity. Lebensm.-Wiss. Technol., 28, 25–30. DOI: 10.1016/S0023-6438(95)80008-5
  8. Brasanac-Vukanovic, S., Mutic, J., Stankovic, D.M., Arsic, I., Blagojevic, N., Vukasinovic-Pesic, V., Tadic, V.M. (2018). Wild bilberry (Vaccinium myrtillus L., Ericaceae) from Montenegro as a source of antioxidants for use in the production of nutraceuticals. Molecules, 23, E1864. DOI: 10.3390/molecules23081864
  9. Buchert, J., Koponen, J.M., Suutarinen, M., Mustranta, A., Lille, M., Törröonen, R., Poutanen, K. (2005). Effect of enzyme-aided pressing on anthocyanin yield and profiles in bilberry and blackcurrant juices. J. Sci. Food Agric., 85, 2548–2556. DOI: 10.1002/jsfa.2284
  10. Castellani, R.J., Rolston, R.K., Smith, M.A. (2010). Alzheimer disease. Dis. Mon., 56, 484–546. DOI: 10.1016/j.disamonth.2010.06.001
  11. Celik, F., Bozhuyuk, M.R., Ercisli, S., Gundogdu, M. (2018). Physicochemical and bioactive characteristics of wild grown bilberry (Vaccinium myrtillus L.) genotypes from Northeastern Turkey. Not. Bot. Horti Agrobot., 46, 128–133. DOI: 10.15835/nbha46110842
  12. Colak, A.M., Kupe, M., Bozhuyuk, M.R., Ercisli, S., Gundogdu, M. (2018). Identifizierung einiger Fruchtmerkmale von Akzessionen der Wildheidelbeere (Vaccinium myrtillus L.) aus Ostanatolien [Identification of some fruit characteristics in wild bilberry (Vaccinium myrtillus L.) accessions from Eastern Anatolia]. Gesunde Pflanz., 70, 31–33. DOI: 10.1007/s10343-017-0410-z
  13. Di Meo, F., Valentino, A., Petillo, O., Peluso, G., Filosa, S., Crispi, S. (2020). Bioactive polyphenols and neuromodulation: Molecular mechanisms in neurodegeneration. Int. J. Mol. Sci., 21, 2564. DOI: 10.3390/ijms21072564
  14. Dinkova, R., Heffels, P., Shikov, V., Weber, F., Schieber, A., Mihalev, K. (2014). Effect of enzyme-assisted extraction on the chilled storage stability of bilberry (Vaccinium myrtillus L.) anthocyanins in skin extracts and freshly pressed juices. Food Res. Int., 65, 35–41. DOI: 10.1016/j.foodres.2014.05.066
  15. Durazzo, A., Lucarini, M., Novellino, E., Daliu, P., Santini, A. (2019). Fruit-based juices: Focus on antioxidant properties-study approach and update. Phytother. Res., 33, 1754–1769. DOI: 10.1002/ptr.6380
  16. Ellman, G.L., Lourtney, D.K., Andres, V., Gmelin, G. (1961). A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem. Pharmacol., 7, 88–95. DOI: 10.1016/0006-2952(61)90145-9
  17. Holtung, L., Grimmer, S., Aaby, K. (2011). Effect of processing of black currant press-residue on polyphenol composition and cell proliferation. J. Agric. Food Chem., 59, 3632e3640. DOI: 10.1021/jf104427r
  18. Igual, M., García-Martínez, E., Camacho, M.M., Martínez-Navarrete, N. (2010). Effect of thermal treatment and storage on the stability of organic acids and the functional value of grapefruit juice. Food Chem., 118, 291–299. DOI: 10.1016/j.foodchem.2009.04.118
  19. Igual, M., García-Martínez, E., Camacho, M.M., Martínez-Navarrete, N. (2011). Changes in flavonoid content of grapefruit juice caused by thermal treatment and storage. Innov. Food Sci. Emerging Technol., 12, 153–162. DOI: 10.1016/j.ifset.2010.12.010
  20. Kechinski, C.P., Guimarães, P.V.R., Noreña, C.P.Z., Tessaro, I.C., Marczak, L.D.F. (2010). Degradation kinetics of anthocyanin in blueberry juice during thermal treatment. J. Food Sci., 75, C173–C176. DOI: 10.1111/j.1750-3841.2009.01479.x
  21. Koponen, J.M., Buchert, J., Poutanen, K.S., Törrönen, A.R. (2008a). Effect of pectinolytic juice production on the extractability and fate of bilberry and black currant anthocyanins. Eur. Food Res. Technol., 227, 485–494. DOI: 10.1007/s00217-007-0745-2
  22. Koponen, J.M., Happonen, A.M., Auriola, S., Kontkanen, H., Buchert, J., Poutanen, K.S., Törrönen, A.R. (2008b). Characterization and fate of black currant and bilberry flavonols in enzyme-aided processing. J. Agric. Food Chem., 56, 3136–3144. DOI: 10.1021/jf703676m
  23. Kowalczewski, P.Ł., Olejnik, A., Białas, W., Kubiak, P., Siger, A., Nowicki, M., Lewandowicz, G. (2019). Effect of thermal processing on antioxidant activity and cytotoxicity of waste potato juice. Open Life Sci., 14, 150–157. DOI: 10.1515/biol-2019-0017
  24. Landbo, A.K., Meyer, A.S. (2001). Enzyme-assisted extraction of antioxidative phenols from black currant juice press residues (Ribes nigrum). J. Agric. Food Chem., 49, 3169–3177. DOI: 10.1021/jf001443p
  25. Landbo, A.K., Meyer, A.S. (2004). Effects of different enzymatic treatments on enhancement of anthocyanins and other phenolics in black currant juice. Innovative Food Sci. Emerging Technol., 5, 503–513. DOI: 10.1016/j.ifset.2004.08.003
  26. Masson, P., Froment, M.T., Bartels, C.F., Lockridge, O. (1996). Asp70 in the peripheral anionic site of human butyrylcholinesterase. Eur. J. Biochem., 235, 36–48. DOI: 10.1111/j.1432-1033.1996.00036.x
  27. Mennah‐Govela, Y.A., Bornhorst, G.M. (2017). Fresh‐squeezed orange juice properties before and during in vitro digestion as influenced by orange variety and processing method. J. Food Sci., 82, 2438–2447. DOI: 10.1111/1750-3841.13842
  28. Miljković, V.M., Nikolić, G.S., Zvezdanović, J., Mihajlov-Krstev, T., Arsić, B.B., Miljković, M.N. (2018). Phenolic profile, mineral content and antibacterial activity of the methanol extract of Vaccinium myrtillus L. Not. Bot. Horti Agrobot., 46, 122–127. DOI: 10.15835/nbha46110966
  29. Miller, N.J., Rice-Evans, C., Davies, M.J., Gopinathan, V., Milner, A. (1993). A novel method for measuring antioxidant capacity and its application to monitoring the antioxidant status in premature neonates. Clin. Sci., 84, 407–412. DOI: 10.1042/cs0840407
  30. Nandita, H., Manohar, M., Gowda, D.V. (2020). Recent review on oxidative stress, cellular senescence and age-associated diseases. Int. J. Res. Pharm. Sci., 11, 1331–1342. DOI: 10.26452/ijrps.v11i2.1990
  31. Ochmian, I., Oszmiański, J., Skupień, K. (2009). Chemical composition, phenolics, and firmness of small black fruits. J. Appl. Bot. Food Qual., 83, 64–69.
  32. Prior, R.L., Cao, G., Martin, A., Sofic, E., McEwen, J., O’Brien, C., Lischner, N., Ehlenfeldt, M., Kalt, W., Krewer, G., Mainland, C.M. (1998). Antioxidant capacity as influenced by total phenolic and anthocyanin content, maturity, and variety of Vaccinium species. J. Agric. Food Chem., 46, 2686–2693. DOI: 10.1021/jf980145d
  33. Puupponen-Pimiä, R., Nohynek, L., Ammann, S., Oksman-Caldentey, K.M., Buchert, J. (2008). Enzyme-assisted processing increases antimicrobial and antioxidant activity of bilberry. J. Agric. Food Chem., 56, 681–688. DOI: 10.1021/jf072001h
  34. Ramirez, M.R., Izquierdo, I., do Carmo Bassols Raseira, M., Zuanazzi, J.Â., Barros, D., Henriques, A.T. (2005). Effect of lyophilised Vaccinium berries on memory, anxiety and locomotion in adult rats. Pharmacol. Res., 52, 457–462. DOI: 10.1016/j.phrs.2005.07.003
  35. Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M., Rice-Evans, C. (1999). Antioxidant activity applying an improved ABTS radical cationdecolorization assay. Free Radic. Biol. Med., 26, 1231–1237.
  36. Rhee, I.K., van Rijn, R.M., Verpoorte, R. (2003). Qualitative determination of false-positive effects in the acetylcholinesterase assay using Thin Layer Chromatography. Phytochem. Anal., 14, 127–131. DOI: 10.1002/pca.675
  37. Riihinen, K., Jaakola, L., Kärenlampi, S., Hohtola, A. (2008). Organ-specific distribution of phenolic compounds in bilberry (Vaccinium myrtillus) and ‘northblue’ blueberry (Vaccinium corymbosum × V. angustifolium). Food Chem., 110, 156–160. DOI: 10.1016/j.foodchem.2008.01.057
  38. Rouanet, J.-M., Décordé, K., Rio, D.D., Auger, C., Borges, G., Cristol, J.-P., Lean, M.E.J., Crozier, A. (2010). Berry juices, teas, antioxidants and the prevention of atherosclerosis in hamsters. Food Chem., 118, 266–271. DOI: 10.1016/j.foodchem.2009.04.116
  39. Sandri, I.G., Lorenzoni, C.M.T., Fontana, R.C., da Silveira, M.M. (2013). Use of pectinases produced by a new strain of Aspergillus niger for the enzymatic treatment of apple and blueberry juice. LWT-Food Sci. Technol., 51, 469–475. DOI: 10.1016/j.lwt.2012.10.015
  40. Santini, A., Novellino, E. (2014). Nutraceuticals: Beyond the diet before the drugs. Curr. Bioact. Compd. 10, 1–12. DOI: 10.2174/157340721001140724145924
  41. Senica, M., Stampar, F., Veberic, R., Mikulic-Petkovsek, M. (2016). Processed elderberry (Sambucus nigra L.) products: A beneficial or harmful food alternative? LWT-Food Sci. Technol., 72, 182–188. DOI: 10.1016/j.lwt.2016.04.056
  42. Slatnar, A., Jakopic, J., Stampar, F., Veberic, R., Jamnik, P. (2012). The Effect of bioactive compounds on in vitro and in vivo antioxidant activity of different berry juices. PLoS ONE, 7, e47880. DOI: 10.1371/journal.pone.0047880
  43. Szajdek, A., Borowska, E.J., Czaplicki, S. (2009). Effect of bilberry mash treatment on the content of some biologically active compounds and the antioxidant activity of juices. Acta Aliment., 38, 281–292. DOI: 10.1556/AAlim.38.2009.3.2
  44. Szwajgier, D. (2015). Anticholinesterase activity of selected phenolic acids and flavonoids – Interaction testing in model solutions. Ann. Agr. Env. Med., 22, 690–694. DOI: 10.5604/12321966.1185777
  45. Szwajgier, D., Baranowska-Wójcik, E., Borowiec, K. (2018). Phenolic acids exert anticholinesterase and cognition-improving effects. Curr. Alzheimer Res., 15, 531–543. DOI: 10.2174/1567205014666171128102557
  46. Szwajgier, D., Borowiec, K. (2012). Phenolic acids from malt are efficient acetylcholinesterase and butyrylcholinesterase inhibitors. J. Inst. Brew., 118, 40–48. DOI: 10.1002/jib.5
  47. Talavéra, S., Felgines, C., Texier, O., Besson, C., Mazur, A., Lamaison, J.-L., Rémésy, C. (2006). Bioavailability of a bilberry anthocyanin extract and its impact on plasma antioxidant capacity in rats. J. Sci. Food Agric., 86, 90–97. DOI: 10.1002/jsfa.2327
  48. Wang, W.-D., Xu, S.-Y. (2007). Degradation kinetics of anthocyanins in a blackberry juice and concentrate. J. Food Engineer., 82, 271–275. DOI: 10.1016/j.jfoodeng.2007.01.018
  49. Vepsäläinen, S., Koivisto, H., Pekkarinen, E., Mäkinen, P., Dobson, G., McDougall, G.J., Stewart, D., Haapasalo, A., Karjalainen, R.O., Tanila, H., Hiltunen, M. (2013). Anthocyanin-enriched bilberry and blackcurrant extracts modulate amyloid precursor protein processing and alleviate behavioral abnormalities in the APP/PS1 mouse model of Alzheimer’s disease. J. Nutr. Biochem., 24, 360–370. DOI: 10.1016/j.jnutbio.2012.07.006
  50. Yamakawa, M.Y., Uchino, K., Watanabe, Y., Adachi, T., Nakanishi, M., Ichino, H., Hongo, K., Mizobata, T., Kobayashi, S., Nakashima, K., Kawata, Y. (2016). Anthocyanin suppresses the toxicity of Aβ deposits through diversion of molecular forms in in vitro and in vivo models of Alzheimer’s disease. Nutr. Neurosci., 19, 32–42. DOI: 10.1179/1476830515Y.0000000042

Downloads

Download data is not yet available.

Most read articles by the same author(s)

Similar Articles

<< < 5 6 7 8 9 10 11 12 13 14 > >> 

You may also start an advanced similarity search for this article.