Abstract
Tomato is major horticultural plant consumed worldwide. Biotic stress (nematodes, fungus and bacteria) has negative effect on tomato production due to causing reduced yield or plant death. Rootstocks confer resistance to soil-borne pathogen are considered the most effective and environment friendly approach for such a stress management. Thus, development of genetic resources having multiple resistance genes is essential for sustainable tomato breeding. Solanum habrochaites is one of the most studied wild tomato species due to its high genetic potential for biotic and abiotic stresses. In the present study, rootstock potential of an interspecific F1 hybrid derived from S. habrochaites was evaluated as using resistance genes (Frl, I-2, I-3, Mi-3, Pto Ty-1, Ty-3 and Sw-5) specific molecular markers for 6 major tomato diseases and 31 fruit quality traits. The study reported that F1 hybrid had resistance alleles for 5 genes (Frl, I-2, I-3, Pto and Sw-5) confer resistance to fusarium crown rot disease, crown – root rot disease, race 2 and 3 of Fusarium oxysporum f. sp. radicis lycopersici, bacterial speck and tomato spotted wilt virus (TSWV), respectively. Despite high performance of F1 hybrid for biotic stress, the study pointed S. habrochaites specific graft incompatibility due to poor rate of grafting efficiency, small fruit formation and low yield. This is the first comprehensive study evaluated the horticultural performance of an interspecific hybrid in tomato.
References
- Ashita, E. (1927). Grafting of watermelons. Agr. Uwsl., 1, 9 [in Japanese].
- Cohen, S., Naor, A. (2002). The effect of three rootstocks on water use, canopy conductance and hydraulic parameters of apple trees and predicting canopy from hydraulic conductance. Plant, Cell Environ., 25(1), 17–28. https://doi.org/10.1046/j.1365-3040.2002.00795.x
- Dianese, E.C., de Fonseca, M.E., Goldbach, R., Kormelink, R.G., Inoue-Nagata, A.K., Resende, R.O., Boiteux, L.S. (2010). Development of a locus-specific, co-dominant SCAR marker for assisted-selection of the Sw-5 (Tospovirus resistance) gene cluster in a wide range of tomato accessions. Mol. Breeding, 25(133). https://doi.org/10.1007/s11032-009-9313-8
- Djidonou, D., Simonne, A.H., Koch, K.E., Brecht, J.K., Zhao, X. (2016). Nutritional quality of field-grown tomato fruit as affected by grafting with interspecific hybrid rootstocks. HortSci., 51(12), 1618–1624. https://doi.org/10.21273/HORTSCI11275-16
- Doyle, J.J., Doyle, J.L. (1987). A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem. Bull., 19(1), 11–15.
- FAO. (2018). Statistics of food and agriculture organization of the united nations. Available: https://www.fao.org/3/CA1796EN/ca1796en.pdf? [date of access: 18.11.2021].
- Fischer, I., Camus‐Kulandaivelu, L., Allal, F., Stephan, W. (2011). Adaptation to drought in two wild tomato species: the evolution of the Asr gene family. New Phytol., 190(4), 1032–1044. https://doi.org/10.1111/j.1469-8137.2011.03648.x
- Frusciante, L., Carli, P., Ercolano, M.R., Pernice, R., Di Matteo, A., Fogliano, V., Pellegrini, N. (2007). Antioxidant nutritional quality of tomato. Mol. Nutr. Food Res., 51(5), 609–617. https://doi.org/10.1002/mnfr.200600158
- Garcia, B.E., Mejía, L., Salus, M.S., Martin, C.T., Seah, S., Williamson, V.M., Maxwell, D.P. (2007). A co-dominant SCAR marker, Mi23, for detection of the Mi-1.2 gene for resistance to root-knot nematode in tomato germplasm. Available: http://invirlab.plantpath.wisc.edu/GeminivirusResistantTomatoes/Markers/MAS-Protocols/Mi23-SCAR.pdf [date of access: 18.11.2021].
- Hemming, M.N., Basuki, S., McGrath, D.J., Carroll, B., Jones, D.A. (2004). Fine mapping of the tomato I-3 gene for fusarium wilt resistance and elimination of a co-segregating resistance gene analogue as a candidate for I-3. Theor. Appl. Genet., 109, 409–418. https://doi.org/10.1007/s00122-004-1646-4
- Ibrahim, M., Munira, M.K., Kabir, M.S., Islam, A.K.M.S, Miah, M.M.U. (2001). Seed germination and graft compatibility of wild Solanum as rootstock of tomato. Online Journal of Biological Sciences., 1(8),701-703.Jaksch, T., Kell, K. (1997). Grafting tomatoes ensures higher yields. Gemüse Münch., 33(5), 345–346.
- Ji, Y., Schuster, D.J., Scott, J.W. (2007). Ty-3, a begomo virüs resistance locus near the Tomato yellow leaf curl virus resistance locus Ty-1 on chromosome 6 of tomato. Mol. Breed., 20, 271–284. https://doi.org/10.1007/s11032-007-9089-7
- Kawaguchi, M., Taji, A., Backhouse, D., Oda, M. (2008). Anatomy and physiology of graft incompatibility in solanaceous plants. J. Horticult. Sci. Biotechnol., 83(5), 581–588. https://dx.doi.org/10.1080/14620316.2008.11512427
- Keatinge, J.D.H., Lin, L.-J., Ebert, A.W., Chen, W.Y., Hughes, J.d’A., Luther, G.C., Wang, J.-F., Ravishankar, M. (2014). Overcoming biotic and abiotic stresses in the Solanaceae through grafting: current status and future perspectives. Biol. Agricult. Horticult., 30(4), 272–287. https://doi.org/10.1080/01448765.2014.964317
- Kell, K., Jaksch, T. (1998). Comparison of stocks in tomato, Gemüse Münch., 34(12), 700–704.
- King, S.R., Davis, A.R., Zhang, X., Crosby, K. (2010). Genetics, breeding and selection of rootstocks for Solanaceae and Cucurbitaceae. Sci. Horticult., 127(2), 106–111. https://doi.org/10.1016/j.scienta.2010.08.001
- Kurata, K. (1992). Transplant production robots in Japan. In: Transplant production systems. Springer, Dordrecht, 313–329. https://doi.org/10.1007/978-94-011-2785-1_17
- Lee, S.G., Choi, J.U., Kim, K.Y., Chung, J.H., Lee, Y.B. (1997). Effect of rootstocks and grafting methods on the growth and fruit quality of tomato (Lycopersicum esculentum Mill.). RDA J. Horticult. Sci., 39(2), 15–20.
- Lee, J.M., Oda, M. (2003). Grafting of herbaceous vegetable and ornamental crops. Horticult. Rev., 28, 61–124. https://doi.org/10.1002/9780470650851.ch2
- Leoni, S., Grudina, R., Cadinu, M., Madeddu, B., Carletti, M.G. (1991). The influence of four rootstocks on some melon hybrids and a cultivar in greenhouse. Acta Horticult., 287, 127–134. https://doi.org/10.17660/ActaHortic.1991.287.12
- Louws, F.J., Rivard, C.L., Kubota, C. (2010). Grafting fruiting vegetables to manage soilborne pathogens, foliar pathogens, arthropods and weeds. Sci. Horticult., 127(2), 127–146. https://doi.org/10.1016/j.scienta.2010.09.023
- Mng’omba, S.A., Sileshi, G.W., Jamnadass, R., Akinnifesi, F.K., Mhango, J. (2012). Scion and Stock diameter size effect on growth and fruit production of Sclerocarya birrea (Marula) trees. J. Horticult. Forest., 4(9), 153–160.
- Mutlu, N., Demirelli, A., Ilbi, H., Ikten, C. (2015). Development of co-dominant SCAR markers linked to resistant gene against the Fusarium oxysporum f. sp. radicis-lycopersici. Theor. Appl. Genet., 128, 1791–1798. https://doi.org/10.1007/s00122-015-2547-4
- Oda, M., Nagata, M., Tsuji, K., Sasaki, H. (1996). Effect of scarlet eggplant rootstock on growth, yield, and sugar content of grafted tomato fruits. J. Japan. Soc. Horticult. Sci.., 65(3), 531–536.
- Oda, M. (1999). Grafting of vegetables to improve greenhouse production. Available: https://www.fftc.org.tw/en/publications/main/1383 [date of access: 18.11.2021].
- Pérez de Castro, A., Blanca, J.M., Díez, M.J., Viñals, F.N. (2007). Identification of a CAPS marker tightly linked to the Tomato yellow leaf curl disease resistance gene Ty-1 in tomato. Europ J. Plant Pathol., 117(4), 347–356. https://doi.org/10.1007/s10658-007-9103-2
- Rivard, C.L., O'Connell, S., Peet, M.M., Louws, F.J. (2010). Grafting tomato with interspecific rootstock to manage diseases caused by Sclerotium rolfsii and southern root-knot nematode. Plant Dis., 94(8), 1015–1021. https://doi.org/10.1094/PDIS-94-8-1015
- Samfield, D.M., Zajicek, J.M., Cobb, B.G. (1991). Rate and uniformity of herbaceous perennial seed germination and emergence as affected by priming. J. Am. Soc. Horticult. Sci., 116(1), 10–13.
- Staniaszek, M., Kozik, E.U., Marczewski, W. (2007). A CAPS marker TAO1902 diagonistic for the I-2 gene conferring resistance to Fusarium oxysporum f. sp. Lycopersici race 2 in tomato. Plant Breed., 126(3), 331–333. http://dx.doi.org/10.1111/j.1439-0523.2007.01355.x
- Turhan, A., Ozmen, N., Serbeci, M.S., Seniz, V. (2011). Effects of grafting on different rootstocks on tomato fruit yield and quality. Horticult. Sci., 38(4), 142–149. https://doi.org/10.17221/51/2011-HORTSCI
- UPOV (2001). Guidelines for the conduct of tests for distinctness, uniformity and stability. Tomato. Available: https://www.upov.int/en/publications/tg-rom/tg044/tg_44_10.pdf [date of access: 18.11.2021].
- Yamakawa, B. (1983). [Grafting]. In: Vegetable handbook, Nishi, K., 141–153 [in Japanese].
- Yang, W., Francis, D.M. (2005). Marker-assisted selection for combining resistance to bacterial spot and bacterial speck in tomato. J. Am. Soc. Horticult. Sci., 130(5), 716–721. http://dx.doi.org/10.21273/JASHS.130.5.716
- Yetişir, H., Yarşi, G., Sari, N. (2004). Sebzelerde Aşilama [Grafting in vegetables]. Bahçe, 33(1–2), 27–37 [in Turkish].
- Yücel, S., Elekçioğlu, I.H., Can, C., Söğüt, M.A., Özarslandan, A. (2007). Alternative treatments to methyl bromide in the Eastern Mediterranean region of Turkey. Turk. J. Agricult. Forest., 31(1), 47–53.
- Zhang, C.L., Zhang, Y.D., Lu, L.W., Zhu, J.C. (1995). On the potassium uptake of the graft plants of diffrrent varieties of tomato. J. Nanjing Agricult. Univ., 18(3), 72–80.
Downloads
Download data is not yet available.
-
Jacek Gawroński,
Elżbieta Kaczmarska,
EFFECT OF POLLINATION MODE ON FRUIT SET IN BLUE HONEYSUCKLE (Lonicera caerulea L.)
,
Acta Scientiarum Polonorum Hortorum Cultus: Vol. 17 No. 3 (2018)
-
Saied Kamel Mohamed Abd El-Naby,
Amr Abdelkhalek Ahmed Mohamed,
Yahia Ibrahim Mohamed El-Naggar,
EFFECT OF MELATONIN, GA3 AND NAA ON VEGETATIVE GROWTH, YIELD AND QUALITY OF ‘CANINO’ APRICOT FRUITS
,
Acta Scientiarum Polonorum Hortorum Cultus: Vol. 18 No. 3 (2019)
-
Erdal Ağlar,
Ahmet Sümbül,
Orhan Karakaya,
Burhan Ozturk,
DETERMINING OF THE FRUIT CHARACTERISTICS OF PISTACHIO GRAFTED ON WILD Pistacia terebinthus L. UNDER THE CENTRAL KELKIT BASIN (TURKEY) ECOLOGICAL CONDITIONS
,
Acta Scientiarum Polonorum Hortorum Cultus: Vol. 19 No. 6 (2020)
-
Ying Peng,
Hui Tong,
Wuping Yin,
Ye Yuan,
Zuhua Yuan,
Effects of summer pruning on the growth and photosynthetic characteristics of pepper (Capsicum annuum L.)
,
Acta Scientiarum Polonorum Hortorum Cultus: Vol. 23 No. 1 (2024)
-
Ayman E.A. Shaban,
Ahmed A. Rashedy,
Mohammed I.M. El-Banna,
MITIGATION OF EXCESSIVE SOLAR RADIATION AND WATER STRESS ON ‘KEITT’ MANGO Mangifera indica TREES THROUGH SHADING
,
Acta Scientiarum Polonorum Hortorum Cultus: Vol. 20 No. 4 (2021)
-
Vahid Rahimi,
Mehdi Mohebodini,
Mahdi Behnamian,
Shiva Azizinia,
THE RELATIONSHIP BETWEEN MORPHOLOGICAL TRAITS AND SEED YIELD OF IRANIAN GARDEN CRESS ACCESSIONS
,
Acta Scientiarum Polonorum Hortorum Cultus: Vol. 18 No. 3 (2019)
-
Katarzyna Karczmarz,
Agnieszka Szmagara,
Elżbieta Anna Stefaniak,
ELLAGIC ACID CONTENT IN SELECTED WILD SPECIES OF FRUIT ROSES
,
Acta Scientiarum Polonorum Hortorum Cultus: Vol. 18 No. 5 (2019)
-
Aydın Uzun,
Mehmet Yaman,
Hasan Pinar,
Batuhan Durmuş Gök,
İsa Gazel,
LEAF AND FRUIT CHARACTERISTICS AND GENETIC DIVERSITY OF WILD FRUIT Cerasus prostrata GENOTYPES COLLECTED FROM THE CENTRAL ANATOLIA, TURKEY
,
Acta Scientiarum Polonorum Hortorum Cultus: Vol. 20 No. 2 (2021)
-
Wenjiao Wang,
Shifeng Wang,
Ye Guo,
Meilan Li,
Leiping Hou,
EXPRESSION AND CHARACTERISATION OF CUCUMBER FRUIT FLESH THICKNESS-RELATED GENE CSA2M058670.1
,
Acta Scientiarum Polonorum Hortorum Cultus: Vol. 19 No. 2 (2020)
-
Aleksandar Leposavić,
Djurdjina Ružić,
Žaklina Karaklajić-Stajić,
Radosav Cerović,
Tatjana Vujović,
Edward Żurawicz,
Olga Mitrović,
FIELD PERFORMANCE OF MICROPROPAGATED Rubus SPECIES
,
Acta Scientiarum Polonorum Hortorum Cultus: Vol. 15 No. 5 (2016)
<< < 1 2 3 4 5 6 7 8 9 10 > >>
You may also start an advanced similarity search for this article.