Skip to main navigation menu Skip to main content Skip to site footer

Vol. 21 No. 4 (2022)

Articles

Establishing an effective protocol for micropropagation of mullberry (Morus nigra L.)

DOI: https://doi.org/10.24326/asphc.2022.4.1
Submitted: July 10, 2020
Published: 2022-08-31

Abstract

Murashige and Skoog (MS) medium supplemented with plant growth regulators composed of different concentrations were used in vitro rapid and mass multiplication of nodal explants obtained from shoots of black mulberry (Morus nigra L.) seedlings grown in a fully controlled greenhouse. Eighteen different concentration of 6-benzylaminopurin, thidiazuron (TDZ), kinetin (KN) GA3 and naphthalene acetic acid (NAA) as plant growth regulators were used. In contrast to expectation, combinations of (TDZ 1.0 mg L–1 + GA3 0.25 mg L–1) and (TDZ 2.0 mg L–1 + GA3 0.25 mg L–1) were found to give positive results in shoot proliferation and plant formation at the end of the study. In the rooting study (NAA 0.5 mg L–1 + KN 0.1 mg L–1) and (NAA 0.5 mg L–1 + KN 0.2 mg L–1) treatment showed positive results.

References

  1. Akram, M., Aftab, F. (2012). Efficient micropropagation and rooting of King White mulberry (Morus macroura var levigata) from nodal explants of mature tree. Pakistan J. Bot., 44, 285–289.
  2. Anis M., Faisal M., Singh S.K. (2003). Micropropagation of mulberry (Morus alba L.) through in vitro culture of shoot type and nodal explants. Plant Tissue Cult., 13(1), 47–51.
  3. Anuradha, M., Pullaiah, T. (1992). Micropropagation of mulberry (Morus alba L.). Ann. Bot., 15, 35–41.
  4. Aljane, F., Sdiri, N. (2016). Morphological, phytochemical and antioxidant characteristics of white (Morus alba L.), red (Morus rubra L.) and black (Morus nigra L.) mulberry fruits grown in arid regions of Tunisia. J. New Sci. Agr. Biotechnol., 35(1), 1940–1947.
  5. Aras, S., Gündeşli, M.A., Uğur, R., Özatar, O., Ilgın, M. (2019). Determination of pomological properties of black mulberry (Morus nigra L.) grown in Kahramanmaras province. Int. Math. Engineer. Nat. Sci., 11, 89–97.
  6. Attia, A.O., Sdessoky, E., El-Hallous, E.I., Shabaan, H.F. (2014). Micropropagation of mullberry (Morus alba L.) cv. Al-Taify. Int. J. Bio-Technol. Res., 4, 15–22.
  7. Balakrishnan, V., Latha, M.R., Ravindran, K.C., Robinson, J.P. (2009). Clonal propagation of Morus alba L. through nodal and axillary bud explants. Bot. Res. Int., 2(1), 42–49.
  8. Bhatnagar, S.A. Kapur, Khurana, P. (2001). TDZ-mediated differentiation in commercially valuable Indian mulberry Morus indica cultivars K2 and DD. Plant Biotechnol., 18, 61–65. https://doi.org/10.5511/plantbiotechnology.18.61 DOI: https://doi.org/10.5511/plantbiotechnology.18.61
  9. Chalupa, V. (1988). Large scale micropropagation of Quercus robur L. using adenine-type cytokinins and thidiazuron to stimulate regeneration. Biol. Plant., 30, 414–421. https://doi.org/10.1007/BF02890509 DOI: https://doi.org/10.1007/BF02890509
  10. Chitra, D.S.V., Padmaja, G. (2005). Shoot regeneration via direct organogenesis from in vitro derived leaves of mulberry using thidiazuron and 6-benzylaminopurine. Sci. Hortic., 106, 593–602. DOI: https://doi.org/10.1016/j.scienta.2005.05.008
  11. Debnath, S.C. (2005). A two-step procedure for adventitious shoot regeneration from in vitro-derived lingo berry leaves: shoot induction with TDZ and shoot elongation using zeatin. Hort. Sci., 40(1), 189–192. https://doi.org/10.21273/HORTSCI.40.1.189 DOI: https://doi.org/10.21273/HORTSCI.40.1.189
  12. Desai, S., Desai, P., Mankad, M., Patel, A., Patil, G., Narayan, S. (2018). Development of micropropagation protocol for Morus nigra L. (black mulberry) through axillary buds. Int. J. Chem. Stud., 6(2), 585–589.
  13. Feyissa, T., Welander M., Negash, L. (2005). In vitro regeneration of Hagenia abyssinica from leaf explants. Plant Cell Rep., 24, 392–400. https://doi.org/10.1007/s00299-005-0949-5 DOI: https://doi.org/10.1007/s00299-005-0949-5
  14. Gray, D.J., Benton, C.M. (1991). In vitro micropropagation and plant establishment of muscadine grape cultivars (Vitis rotundifolia). Plant Cell Tiss. Organ Cult., 27, 7–14. https://doi.org/10.1007/BF00048199 DOI: https://doi.org/10.1007/BF00048199
  15. Gundesli, M.A., Korkmaz, N., Okatan, V. (2019). Polyphenol content and antioxidant capacity of berries. Rev. Int. J. Agric. Forest. Life Sci., 3(2), 350–361.
  16. Gunes, M., Cekic, C. (2004). Determination of phenologically and pomological characteristics of different mulberry species grown in Tokat region. National Kiwi and Raisin Fruits Symposium, 413–417.
  17. Guney (2019). Development of an in vitro micropropagation protocol for Myrobolan 29C rootstock. Turkish J. Agr. Forest., 43, 569–575. https://doi:10.3906/tar-1903-4 DOI: https://doi.org/10.3906/tar-1903-4
  18. Kakarla, L., Rama, C. (2014). In vitro rooting efficiency in Morus indica cultivars (S34, S54, M5 and Mysore-local) from in vitro shoot cultures. Curr. Trends Biotechnol. Pharm., 8(3), 288–293.
  19. Lalitha, N., Kih, S., Banerjee, R. Chattopadhya, S., Saha, A.K., Bindroo, B.B. (2013). High frequency multiple shoot induction and in vitro regeneration of mulberry (Morus indica L. cv. S-1635). Int. J. Adv. Res., 1, 22–26.
  20. Murashige T., Skoog, F. (1962). A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol. Plant, 15, 473–497. https://doi.org/10.1111/j.1399-3054.1962.tb08052.x DOI: https://doi.org/10.1111/j.1399-3054.1962.tb08052.x
  21. Niratker, C., Singh, P., Singh, M. (2015). Effect of different type of media on in vitro regeneration of mulberry (Morus indica): an economically important tree. Ann. Biol. Res., 6(1), 22–26.
  22. Ohyama, K. 1970. Tissue culture in mulberry tree. Japan Agr. Res. Quart., 5(1), 30–34.
  23. Okatan, V. (2020). Antioxidant properties and phenolic profile of the most widely appreciated cultivated berry species: a comparative study. Folia Hort., 32(1), 79–85. https://doi.org/10.2478/fhort-2020-0008 DOI: https://doi.org/10.2478/fhort-2020-0008
  24. Özgen, M., Serçe, S., Kaya, K. (2009). Phytochemical and antioxidant properties of anthocyanin-rich Morus nigra and Morus rubra fruits. Sci. Hort., 119(3), 275–279. https://doi.org/10.1016/j.scienta.2008.08.007 DOI: https://doi.org/10.1016/j.scienta.2008.08.007
  25. Raghunath, M.K., Nataraja, K.N., Meghana, J.S., Sivarajan, R., Rajan, M., Qadri, S.M.H. (2013). In vitro plant regeneration of Morus indica L. cv. V1 using leaf explant. Am. J. Plant Sci., 4(10), 2001–2001. https://dx.doi.org/10.4236/ajps.2013.410249 DOI: https://doi.org/10.4236/ajps.2013.410249
  26. Rao, P.J.S.V.V.N.H., Nuthan, D., Krishna, K.S. (2010a). A protocol for in vitro regeneration of rain fed mulberry varieties through callus phase. Euro J. Biol. Sci., 2, 80–86. https://10.1007/s13205-017-0829
  27. Rao, P.J.S.V.V.N.H., Nuthan, D., Krishna, K.S., Basavaraja, M.K. (2010b). In vitro propagation of irrigated mulberry varieties using nodal explants. Curr. Biotechnol., 3(4), 555–564. https://www.cabdirect.org/cabdirect/abstract/20103271569
  28. Sajeevan, R.S., Jeba, S.S., Nataraja, K.N., Shivanna, M.B. (2011). An efficient in vitro protocol for multiple shoot induction in mulberry, Morus alba L variety V1. Int. Res. J. Plant Sci., 2(8), 254–261.
  29. Singhal B.K., Dhar A., Khan M.A. (2009). Potential economic additions by mulberry fruits in sericulture industry. Plant Hort. Technol., 9, 47–51.
  30. Wulandari Y.R.E., Harjosudirjo M.A. (2019). Micropropagation of Morus cathayana through in vitro culture from local Bogor, West Java, Indonesia. Nusantara Biosci. 11(1), 18–22. https://doi.org/10.13057/nusbiosci/n110104 DOI: https://doi.org/10.13057/nusbiosci/n110104
  31. Yusnita S., Geneve R.L., Kester S.T. (1990). Micropropagation of white flowering eastern redbud (Cercis canadensis var. alba L.). J. Environ. Hort., 25(9). https://doi.org/10.21273/HORTSCI.25.9.1091b DOI: https://doi.org/10.21273/HORTSCI.25.9.1091b
  32. Zaki, M., Kaloo, Z.A., Sofi, M.S. (2011). Micropropagation of Morus nigra L. from nodal segments with axillary buds. World J. Agric. Sci., 7(4), 496–503.

Downloads

Download data is not yet available.

Similar Articles

<< < 4 5 6 7 8 9 10 11 12 13 > >> 

You may also start an advanced similarity search for this article.