Skip to main navigation menu Skip to main content Skip to site footer

Vol. 14 No. 6 (2015)

Articles

MINERAL COMPOSITION OF FIELD-GROWN LETTUCE (Lactuca sativa L.) DEPENDING ON THE DIVERSIFIED FERTILIZATION WITH IODINE AND SELENIUM COMPOUNDS

Submitted: November 19, 2020
Published: 2015-12-31

Abstract

The practice of simultaneous biofortification (enrichment) of plants with iodine (I) and selenium (Se) is based on solid grounds. Their low content in soils is the cause of an endemic deficiency of I and Se in several billion people worldwide. There is still no objective information as to the impact of I and Se interactions on mineral nutrition of plants. The study (conducted in 2012–2014), included soil fertilization of the lettuce cv. ‘Valeska’ in the following combinations: control, KI, KIO3, Na2SeO4, Na2SeO3, KI + Na2SeO4, KIO3 + Na2SeO4, KI + Na2SeO3, KIO3 + Na2SeO3. I and Se were applied twice: before sowing and as top-dressing (each 2.5 kg I·ha-1 + 0.5 kg Se·ha-1) – a total dose of 5 kg I·ha-1 and 1 kg Se·ha-1 was used. Fertilization with Na2SeO4, KI + Na2SeO4 and KIO3 + Na2SeO4 considerably reduced the dry matter yield of the plants – it also lowered the content of P, K, Mg, Ca, B, Zn and Cd in the lettuce. Fertilization with Na2SeO3, KI + Na2SeO3 and KIO3 + Na2SeO3 had a less negative impact on dry matter yield than the use of Na2SeO4 – every year it affected the mineral content in the lettuce in a highly varied
manner. Dry matter productivity of the plants after fertilization with KI and KIO3 varied between the research years – in those plots, I content in lettuce was negatively correlated with the content of K, Mg, Ca, S, Na, B, Cu, Fe, Mn, Zn, Cd and Pb. Combined fertilization with KI and KIO3 with Na2SeO4, and with Na2SeO3 reduced the negative correlation between I content (in the KI and KIO3 plots) and the content of K, Mg, Ca, S, Na, B, Cu, Fe, Mn, Zn, Cd and Pb. After fertilization with Na2SeO4, Se content was positively correlated with Na content and negatively correlated with the content of Mg, Ca, Fe, Mn and Cd. Se content in the lettuce after fertilizing exclusively with Na2SeO3 was positively correlated with the content of P, K, Na, Mn, Mo and Zn. The changeable climatic conditions “disguised” the influence of fertilization with I and Se on the mineral composition of the lettuce plants.

References

Altansuvd, J., Nakamaru, Y.M., Kasajima, S., Ito, H., Yoshida, H. (2014). Effect of long-term phosphorus fertilization on soil Se and transfer of soil Se to crops in northern Japan. Chemosphere, 107, 7–12. doi: 10.1016/j.chemosphere.2014.02.056.
Blasco, B., Rios, J.J., Leyva, R., Cervilla, L.M., Sanchez-Rodriguez, E., Rubio-Wilhelmi, M.M., Rosales, M.A., Ruiz, J.M., Romero, L. (2010). Does iodine biofortification affect oxidative metabolism in lettuce plants? Biol. Trace Elem. Res., 142(3), 831–842. doi: 10.1007/s12011-010-8816-9.
Blasco, A., Rios, J.J., Cervilla, L.M., Sanchez-Rodriguez, E., Rubio-Wilhelmi, M.M., Rosales, M.A., Romero, L., Ruiz, J.M. (2011a). Iodine application affects nitrogen-use efficiency of lettuce plants (Lactuca sativa L.). Acta Agric. Scand., 61(4), 378–383. doi: 10.1080/09064710.2010.492782.
Blasco, B., Rios, J.J., Leyva, R., Melgarejo, R., Constán-Aguilar, C., Sanchez-Rodriguez, E., Rubio-Wilhelmi, M.M., Romero, L., Ruizl J.M. (2011b). Photosynthesis and metabolism of sugars from lettuce plants (Lactuca sativa L. var. longifolia) subjected to biofortification with iodine. Plant Growth Regul., 65, 137–143. doi: 10.1007/s10725-011-9583-0.
Blasco, B., Ríos, J.J., Sánchez-Rodríguez, E., Rubio-Wilhelmi, M.M., Leyva, R., Romero, L., Ruiz, J.M. (2012). Study of the interactions between iodine and mineral nutrients in lettuce plants. J. Plant Nut., 35(13), 1958–1969. doi: 10.1080/01904167.2012.716889.
Borowski, E., Hawrylak-Nowak, B., Michałek, S. (2014). The response of lettuce to fluorescent light and led light relative to different nitrogen nutrition of plants. Acta Sci. Pol. Hortorum Cultus, 13(5), 211–224.
Chilimba, A.D.C., Young, S.D., Black, C.R., Meacham, M.C., Lammel, J., Broadley, M.R. (2012). Assessing residual availability of selenium applied to maize crops in Malawi. Field Crop Res., 134, 11–18. doi: 10.1016/j.fcr.2012.04.010.
Çolak, G., Baykul, C., Gürler, R., Çatak, E., Caner, N. (2014). The effects of selenium on Lycopersicon esculentum Mill. seedlings. Pak. J. Bot., 46(3), 911–920.
Dzida, K., Jarosz, Z., Michałojć, Z., Nurzyńska-Wierdak, R. (2012). The influence of diversified nitrogen and liming fertilization on the chemical composition of lettuce. Acta Sci. Pol. Hortorum Cultus, 11(3), 247–254.
Eurola, M., Alfthan, G., Aro, A., Ekholm, P., Hietaniemi, V., Rainio, H., Rankanen, R., Venäläinen, E.R. (2003). Results of the “Finnish selenium monitoring program 2000–2001”. Agrifood Res. Rep., 36, 42 p.
Gonda, K., Yamaguchi, H., Maruo, T., Shinohara, Y. (2007). Effects of iodine on growth and iodine absorption of hydroponically grown tomato and spinach. Hort. Res. Japan, 6(2), 223-227. doi: 10.2503/hrj.6.223.
GUS (2005). Ochrona Środowiska 2005. Informacje i opracowanie statystyczne. Central Statistical Office of Poland. Warszawa.
Hageman, R.H., Hodge, E.S., McHargue, J.S. (1942). Effect of potassium iodide on the ascorbic acid content and growth of tomato plants. Plant Physiol., 17(3), 465–472.
Hawrylak-Nowak, B., Matraszek, R., Pogorzelec, M. (2015). The dual effects of two inorganic selenium forms on the growth, selected physiological parameters and macronutrients accumulation in cucumber plants. Acta Physiol. Plant., 37, 41 (13 page). doi: 10.1007/s11738-015-1788-9.
Hong, C., Weng, H., Jilani, G., Yan, A., Liu, H., Xue, Z. (2012). Evaluation of iodide and iodate for adsorption–desorption characteristics and bioavailability in three types of soil. Biol. Trace Elem. Res., 146(2), 262–271.
Kato, S., Wachi, T., Yoshihira, K., Nakagawa, T., Ishikawa, A., Takagi, D., Tezuka, A., Yoshida, H., Yoshida, S., Sekimoto, H., Takahashi, M. (2013). Rice (Oryza sativa L.) roots have iodate reduction activity in response to iodine. Front. Plant Sci., 4, 227. doi: 10.3389/fpls.2013.00227.
Kopsell, D.A., Kopsell, D.E. (2007). Selenium. In: Handbook of plant nutrition, Barker, A.V., Pilbeam, D.J. (eds). CRC Press Taylor & Francis Group, pp 515–549.
Li, H.F., McGrath, S.P., Zhao, F.J. (2008). Selenium uptake, translocation and speciation in wheat supplied with selenate or selenite. New Phytol., 178(1), 92–102. doi: 10.1111/j.1469-8137.2007.02343.x.
Longchamp, M., Castrec-Rouelle, M., Biron, P., Bariac, T. (2015). Variations in the accumulation, localization and rate of metabolization of selenium in mature Zea mays plants supplied with selenite or selenate. Food Chem., 182, 128–135. doi: 10.1016/j.foodchem.2015.02.137.
Niwińska, B., Andrzejewski, M. (2014). Selenium supplementation of cattle in Poland: Is it justified? Wiad. Zootech., R. 52, 1, 47–53. (in Polish).
Pasławski, P., Migaszewski, Z.M. (2006). The quality of element determinations in plant materials by instrumental methods. Pol. J. Environ. Stud., 15(2a), 154–164.
Pitura, K., Michałojć, Z. (2012). Influence of nitrogen doses on salt concentration, yield, biological value, and chemical composition of some vegetable plant species. Part I. Yield and biological value. Acta Sci. Pol. Hortorum Cultus, 11(6), 145–153.
Ramos, S.J., Faquin, V., Guilherme, L.R.G., Castro, E.M., Ávila, F.W., Carvalho, G.S., Bartos, C.E.A., Oliveira, C. (2010). Selenium biofortification and antioxidant activity in lettuce plants fed with selenate and selenite. Plant Soil Environ., 56(12), 584–588.
Rashed, M.N. (1995). Selenium biofortification and antioxidant activity in lettuce plants fed with selenate and selenite. J. Arid Environ., 30, 463–478.
Ríos, J.J., Rosales, M.A., Blasco, B., Cervilla, L.M., Romero, L., Ruiz, J.M. (2008). Biofortification of Se and induction of the antioxidant capacity in lettuce plants. Sci. Hort., 116, 248–255. doi: 10.1016/j.scienta.2008.01.008.
Ríos, J.J., Blasco, B., Cervilla, L.M., Rubio-Wilhelmi, M.M., Rosales, M.A., Sánchez-Rodríguez, E., Romero, L., Ruiz, J.M. (2010). Nitrogen-use efficiency in relation to different forms and application rates of Se in lettuce plants. J. Plant Growth Regul., 29, 164–170. doi: 10.1007/s00344-009-9130-7.
Sirtautas, R., Samuoliene, G., Brazaityte, A., Sakalauskaite, J., Sakalauskiene, S., Virsile, A., Jankauskiene, J., Vastakaite, V., Duchovskis, P. (2014). Impact of CO2 on quality of baby lettuce grown under optimized light spectrum. Acta Sci. Pol. Hortorum Cultus, 13(2), 109–118.
Smoleń, S., Sady, W. (2011). Influence of soil application of iodine and sucrose on mineral composition of spinach plants. Acta Sci. Pol. Hortorum Cultus, 13(3), 3–13.
Smoleń, S., Sady, W. (2012). Influence of iodine form and application method on the effectiveness of iodine biofortification, nitrogen metabolism as well as the content of mineral nutrients and heavy metals in spinach plants (Spinacia oleracea L.). Sci. Hort., 143, 176–183. doi: 10.1016/j.scienta.2012.06.006.
Smoleń, S., Kowalska, I., Sady, W. (2014). Assessment of biofortification with iodine and selenium of lettuce cultivated in the NFT hydroponic system. Sci. Hort., 166, 9–16. doi: 10.1016/j.scienta.2013.11.011.
Smoleń, S., Skoczylas, Ł., Rakoczy, R., Ledwożyw-Smoleń, I., Kopeć, A., Piątkowska, E., Bieżanowska-Kopeć, R., Pysz, M., Koronowicz, A., Kapusta-Duch, J., Pawłowski, T. (2015). Iodine and selenium biofortification of lettuce (Lactuca sativa L.) by soil fertilization with various compounds. Sci. Hort., (under review).
Smoleń, S., Rożek, S., Ledwożyw, I., Strzetelski, P. (2011). Preliminary evaluation of the influence of soil fertilization and foliar nutrition with iodine on the efficiency of iodine biofortification and chemical composition of lettuce. J. Element., 16(4), 613–622. doi: 10.5601/jelem.2011.16.4.10.
White, P.J., Broadley, M.R. (2009). Biofortification of crops with seven mineral elements often lacking in human diets – iron, zinc, copper, calcium, magnesium, selenium and iodine. New Phytol., 182(1), 49–84. doi: 10.1111/j.1469-8137.2008.02738.x.
Zhu, Y.G., Huang, Y., Hu, Y., Liu, Y., Christie, P. (2004). Interactions between selenium and iodine uptake by spinach (Spinacia oleracea L.) in solution culture. Plant Soil, 261, 99–105. doi: 10.1023/B:PLSO.0000035539.58054.e1.
Zhu, Y.G., Pilon-Smits, E.A.H., Fang-Jie, Z., Williams, P.N., Meharg, A.A. (2009). Selenium in higher plants: understanding mechanisms for biofortification and phytoremediation. Trends Plant Sci., 14(8): 436–442. doi: 10.1016/j.tplants.2009.06.006.

Downloads

Download data is not yet available.

Most read articles by the same author(s)

1 2 > >> 

Similar Articles

<< < 75 76 77 78 79 80 81 > >> 

You may also start an advanced similarity search for this article.