Skip to main navigation menu Skip to main content Skip to site footer

Vol. 21 No. 5 (2022)

Articles

Influence of biochar on the vegetative and generative growth of ‘Meredith’ peach trees

DOI: https://doi.org/10.24326/asphc.2022.5.6
Submitted: November 24, 2020
Published: 2022-10-28

Abstract

Many studies have confirmed positive effect of biochar as a soil conditioner that can increase in a short time the amount of organic matter (SO) and the reserves of organic carbon (OC) in the soil. The use of biochar also contributes to eliminating the effects of soil fatigue, especially in perennial fruit crops. In our study, biochar was applied in the spring of 2014 in the cultivation of one-year-old peach trees of the cultivar Meredith. Biochar, an organic fertilizer, and microbiologically enriched compost were applied to the arable soil layer. In the experiment, three combinations with biochar were used: (1) biochar at 1.6 kg/tree, (2) biochar at 1.6 kg/tree + microbiologically enriched compost at 0.3 kg/tree, (3) biochar at 1.6 kg/tree + an organic fertilizer at 0.2 kg/tree. In the first growing season, no positive changes were found after the use of biochar. The highest number and yield of fruits in 2015 were obtained from the trees that were treated with microbiologically enriched compost, and the lowest in the combination where biochar + organic fertilizer were used to treat the peach trees. In 2016, the largest number of fruits and their greatest weight were re­corded for the trees treated with biochar + organic fertilizer, whereas the control trees produced the lowest yields. The use of biochar with microorganisms and biochar with organic fertilizer improved the vegetative growth of trees compared to the growth of control trees.

References

  1. Abujabhah, I.S., Bound, S.A., Doyle, R., Bowman, J.P. (2016). Effects of biochar and compost amendments on soil physico-chemical properties and the total community within a temperate agricultural soil. Appl. Soil Ecol., 98, 243–253. https://doi.org/10.1016/j.apsoil.2015.10.021 DOI: https://doi.org/10.1016/j.apsoil.2015.10.021
  2. Abel, S., Peters, A., Trinks, S., Schonsky, H., Facklam, M., Wessolek, G. (2013). Impact of biochar and hydrochar addition on water retention and water repellency of sandy soil. Geoderma, 202–203, 183–191. https://doi.org/10.1016/j.geoderma.2013.03.003 DOI: https://doi.org/10.1016/j.geoderma.2013.03.003
  3. Ahmed, A., Gariepy, Y., Raghavan, V. (2017). Influence of wood-derived biochar on the compactibility and strength of silt loam soil. Int. Agrophys., 31, 149–155. http://dx.doi.org/10.1515/intag-2016-0044 DOI: https://doi.org/10.1515/intag-2016-0044
  4. Andrenelli, M.C., Maienza, A., Genesio, L., Miglietta, F., Pellegrini, S., Vaccari F.P., Vignozzi N. (2016). Field application of pelletized biochar: short term effect on the hydrological properties of a silty clay loam soil. Agric. Water Manag., 163, 190–196. https://doi.org/10.1016/j.agwat.2015.09.017 DOI: https://doi.org/10.1016/j.agwat.2015.09.017
  5. Atkinson, C.J., Fitzgerald, J.D., Hipps, N.A. (2010). Potential mechanisms for achieving agri­cultural benefits from biochar application to temperate soils: review. Plant Soil, 337, 1–18. DOI: https://doi.org/10.1007/s11104-010-0464-5
  6. Atucha, A., Litus, G. (2015). Effect of biochar amendments on peach replant disease. HortScience, 50(6), 863–868. https://doi.org/10.21273/HORTSCI.50.6.863 DOI: https://doi.org/10.21273/HORTSCI.50.6.863
  7. Bayabil, H.K., Stoof, C.R., Lehmann, J.C., Yitaferu, B., Steenhuis, T.S. (2015). Assessing the potential of biochar and charcoal to improve soil hydraulic properties in the humid Ethiopian Highlands: The Anjeni watershed. Geoderma, 243–244, 115–123. https://doi.org/10.1016/j.geoderma.2014.12.015 DOI: https://doi.org/10.1016/j.geoderma.2014.12.015
  8. Blanco-Canqui, H. (2017). Biochar and soil physical properties. Soil Sci. Soc. Am. J., 81, 687–711. https://doi.org/10.2136/sssaj2017.01.0017 DOI: https://doi.org/10.2136/sssaj2017.01.0017
  9. Bridgwater, A.V. (2003). Renewable fuels and chemicals by thermal processing of biomass. Chem. Eng. J., 91, 87–102. https://doi.org/10.1016/S1385-8947(02)00142-0 DOI: https://doi.org/10.1016/S1385-8947(02)00142-0
  10. Castellini, M., Giglio, L., Niedda, M., Palumbo, A.D., Ventrella, D. (2015). Impact of biochar addition on the physical and hydraulic properties of a clay soil. Soil Till. Res., 154, 1–13. https://doi.org/10.1016/j.still.2015.06.016 DOI: https://doi.org/10.1016/j.still.2015.06.016
  11. Chan, K.Y., Van Zwieten, L., Meszaros, I., Downie, A., Joseph, S. (2007). Agronomic values of greenwaste biochar as a soil amendment. Austral. J. Soil Res., 45, 629–634. https://doi.org/10.1071/SR07109 DOI: https://doi.org/10.1071/SR07109
  12. Elmer W.H., Pignatello J.J., (2011). Effect of biochar amendments on mycorrhizal associations and Fusarium crown and root rot of asparagus in replant soils. Plant Dis., 95, 960–966. https://doi.org/10.1094/PDIS-10-10-0741 DOI: https://doi.org/10.1094/PDIS-10-10-0741
  13. Farrell, M., Kuhn, T.K., Macdonald, L.M., Maddern, T.M., Murphy, D.V., Hall, P.A., Singh, B.P., Baumann, K., Krull, E.S., Baldock, J.A. (2013). Microbial utilisation of biochar-derived carbon. Sci. Total Environ., 465, 288–297. https://doi.org/10.1016/j.scitotenv.2013.03.090 DOI: https://doi.org/10.1016/j.scitotenv.2013.03.090
  14. Gale, N.V., Thomas, S.C. (2019). Dose-dependence of growth and ecophysiological responses of plant to biochar. Sci. Total Environ., 658, 1344–1354. https://doi.org/10.1016/j.scitotenv.2018.12.239 DOI: https://doi.org/10.1016/j.scitotenv.2018.12.239
  15. Glaser, B., Lehmann, J., Zech, W. (2002). Ameliorating physical and chemical properties of highly weathered soils in the tropics with charcoal. A review. Biol. Fertil. Soils, 35, 219–230. DOI: https://doi.org/10.1007/s00374-002-0466-4
  16. Głuszek, S., Sas-Paszt, L., Sumorok, B., Kozera, R. (2017). Biochar-rhizosphere interactions – a review. Pol. J. Microbiol., 66(2), 151–161. DOI: https://doi.org/10.5604/01.3001.0010.4361
  17. Gonzaga, M.I.S., Mackowiak, C., Quinatao de Almeida, A., Tinel de Carvalho, J.I., Jr., Andrade, K.R., (2018). Positive and negative effects of biochar from coconut husks, orange bagasse and pine wood chips on maize (Zea mays L.) growth and nutrition. Catena, 162, 414–420. https://doi.org/10.1016/j.catena.2017.10.018 DOI: https://doi.org/10.1016/j.catena.2017.10.018
  18. Hansen, V., Nielsen, H.H., Petersen, C.T., Mikkelsen, T.N., Stover, D.M., (2016). Effects of gasification biochar on plant-available water capacity and plant growth in two contrasting soil types. Soil Tillage Res., 161, 1–9. https://doi.org/10.1016/j.still.2016.03.002 DOI: https://doi.org/10.1016/j.still.2016.03.002
  19. Hosseini Bai, S., Xu, C.Y., Xu, Z., Blumfield, T., Zhao, H., Wallace, H., Reverchom, F., Van Zwieten, L. (2015). Soil and foliar nutrient and nitrogen isotope composition (δ15N) at 5 years after poultry litter and green waste biochar amendment in a macadamia orchard. Environ. Sci. Pollut. Res., 22, 3803–3809. Available: https://link.springer.com/article/10.1007/s11356-014-3649-2 DOI: https://doi.org/10.1007/s11356-014-3649-2
  20. Jones, D.L., Murphy, D.V., Khalid, M., Ahmad, W., Edward-Jones, G., DeLuca, T.H. (2011). Short-term biochar-induced increase in soil CO2 release is both biotically and abiotically mediated. Soil Biol. Biochem., 43, 1723–1731. https://doi.org/10.1016/j.soilbio.2011.04.018 DOI: https://doi.org/10.1016/j.soilbio.2011.04.018
  21. Jonckheere, I., Fleck, S., Nackaerts, K., Muys, B., Coppin, P., Weiss, M., Baret, F. (2003). Review of methods for in situ leaf area index determination. Part I. Theories, sensors and hemispherical photography. Agric. Forest Meteor., 121, 19–35. https://doi.org/10.1016/j.agrformet.2003.08.027 DOI: https://doi.org/10.1016/j.agrformet.2003.08.027
  22. Kraska, P., Oleszczuk, P., Andruszczak, S., Kiecińska-Poppe, E., Różyło, K., Pałys, E., Gierasimiuk, P., Michałojć, Z. (2016). Effect of various biochar rates on winter rye yield and the concentration of available nutrients in the soil. Plant Soil Environ., 62(11), 483–489. Available: https://www.agriculturejournals.cz/publicFiles/94_2016-PSE.pdf DOI: https://doi.org/10.17221/94/2016-PSE
  23. Lehmann, J., da Silva Junior, J.P., Steiner, C., Nehls, T., Zech, W., Glaser, B. (2003a). Nutrient availability and leaching in an archaeological Anthrosol and Ferralsol of the Central Amazon basin: fertilizer, manure and charcoal amendments. Plant Soil, 249, 343–357. http://www.css.cornell.edu/faculty/lehmann/publ/PlantSoil%20249,%20343-357,%202003%20Lehmann.pdf DOI: https://doi.org/10.1023/A:1022833116184
  24. Lehmann, J., Kern, D., German, L., McCann, J., Martins, G.C., Moreira, L., (2003b). Soil fertility and production potential. Chapter 6. In: Amazonian dark earths: origin, properties, management, Lehmann, J., Kern, D.C., Glaser, B., Woods, W.I. (eds.). Kluwer Academic, Dordrecht, 105–124. Available: https://link.springer.com/chapter/10.1007/1-4020-2597-1_6 DOI: https://doi.org/10.1007/1-4020-2597-1_6
  25. Lehmann, J., Rillig, M.C., Thies, J., Masiello, C.A., Hockaday, W.C., Crowley, D. (2011). Biochar effects on soil biota – a review. Soil Biol. Biochem. 43, 1812–1836. https://doi.org/10.1016/j.soilbio.2011.04.022 DOI: https://doi.org/10.1016/j.soilbio.2011.04.022
  26. Liu, Z., Dugan, B., Masiello, C.A., Barnes, R.T., Gallagher, M.E., Gonnermann, H. (2016). Impacts of biochar concentra­tion and particle size on hydraulic conductivity and DOC leaching of biochar-sand mixtures. J. Hydrol., 533, 461–472. https://doi.org/10.1016/j.jhydrol.2015.12.007 DOI: https://doi.org/10.1016/j.jhydrol.2015.12.007
  27. Majeed, A.J., Dikici, H., Demir, Ö.F. (2018). Effect of biochar and nitrogen applications on growth of corn (Zea mays L.) plants. Turk. J. Agric. – Food Sci. Technol., 6(3), 346–351. https://doi.org/10.24925/turjaf.v6i3.346-351.1746 DOI: https://doi.org/10.24925/turjaf.v6i3.346-351.1746
  28. Marks, E.A.N., Mattana, S., Alcañiz, J.M., Domene, X. (2014). Biochars provoke diverse soil mesofauna reproductive responses in laboratory bioassays. Europ. J. Soil Biol., 60, 104–111. https://doi.org/10.1016/j.ejsobi.2013.12.002 DOI: https://doi.org/10.1016/j.ejsobi.2013.12.002
  29. Masek, O., Brownsort, P., Cross, A., Sohi, S. (2013). Influence of production conditions on the yield and environmental stability of biochar. Fuel 103, 151–155. https://doi.org/10.1016/j.fuel.2011.08.044 DOI: https://doi.org/10.1016/j.fuel.2011.08.044
  30. Matsubara, Y.-I., Hasegawa, N., Fukui, H. (2002). Incidence of Fusarium root rot in asparagus seedlings infected with arbuscular mycorrhizal fungus as affected by several soil amendments. Jpn. Soc. Hortic. Sci., 71, 370–374. https://doi.org/10.2503/jjshs.71.370 DOI: https://doi.org/10.2503/jjshs.71.370
  31. Obia, A., Mulder, J., Martinsen, V., Cornelissen, G., Borresen, T. (2016). In situ effects of biochar on aggregation, water retention and porosity in light-textured tropical soils. Soil Till. Res., 155, 35–44. https://doi.org/10.1016/j.still.2015.08.002 DOI: https://doi.org/10.1016/j.still.2015.08.002
  32. Omondi, M.O., Xia, X., Nahayo, A., Liu, X., Korai, P.K., Pan, G., (2016). Quantification of biochar effects on soil hydrological properties using meta-analysis of literature data. Geoderma, 274, 28–34. https://doi.org/10.1016/j.geoderma.2016.03.029 DOI: https://doi.org/10.1016/j.geoderma.2016.03.029
  33. Pacholak, E., Cwynar, M., Zydlik, Z. (1996). Wpływ siedemnastoletniego nawożenia i nawadniania na wzrost jabłoni odmiany ‘Šampion’ na podkładce P 60 w drugim roku po replantacji [Effect of 17-year fertilization and irrigation on the growth of ‘Šampion’ apple trees on P 60 rootstock in the second year after replantation]. 34. Ogólnopolska Naukowa Konferencja Sadownicza, Skierniewice, 96–99.
  34. Rajkovich, S., Enders, A., Hanley, K., Hyland, C., Zimmerman, A.R., Lehmann, J. (2012). Corn growth and nitrogen nutrition after additions of biochars with varying properties to a temperate soil. Biol. Fertil Soils, 48, 271–284. Available: https://link.springer.com/article/10.1007/s00374-011-0624-7 DOI: https://doi.org/10.1007/s00374-011-0624-7
  35. Rebandel, Z. (1987). Problem zmęczenia gleby w sadownictwie. Sadownictwo w Wielkopolsce [The problem of soil fatigue in fruit farming. Fruit growing in Wielkopolska]. PWRiL, Warszawa.
  36. Schaffer, E., Percival, G. (2016). The influence of biochar, slow-release molasses, and an organic N : P : K fertilizer on transplant survival of Pyrus communis ‘Williams’ Bon Chrétien’. Arboricult. Urban For. 42(2), 102–110. Available: http://joa.isa-arbor.com/request.asp?JournalID=1&ArticleID=3385&Type=2 DOI: https://doi.org/10.48044/jauf.2016.009
  37. Scheer, C., Grace, P.R., Rowlings, D.W., Kimber, S., Van Zwieten, L. (2011). Effect of biochar amendment on the soil-atmosphere exchange of greenhouse gases from an intensive subtropical pasture in northern New South Wales, Australia. Plant Soil, 345, 47–58. Available: https://link.springer.com/article/10.1007/s11104-011-0759-1 DOI: https://doi.org/10.1007/s11104-011-0759-1
  38. Sienkiewicz, P. (2006). Wpływ głęboszowania i nawożenia na wzrost jabłoni i grusz posadzonych po zlikwidowanym sadzie jabłoniowym [The effect of subsoiling and fertilization on the growth of apple and pear trees planted in a liquidated apple orchard]. Acta Agrophys., 8(4), 949–961.
  39. Sohi, S.P., Krull, E., Lopez-Capel, E., Bol, R. (2010). A review of biochar and its use and function in soil. Adv. Agron., 105, 47–82. https://doi.org/10.1016/S0065-2113(10)05002-9 DOI: https://doi.org/10.1016/S0065-2113(10)05002-9
  40. Steiner, C., Teixeira, W.G., Lehmann, J., Nehls, T., de Macedo, J.L.C., Blum, W.E.H., Zech, W. (2007). Long-term effects of manure, charcoal and mineral fertilization on crop production and fertility on a highly weathered Central Amazonian upland soil. Plant Soil 291(1–2), 275–290. Available: https://link.springer.com/article/10.1007/s11104-007-9193-9 DOI: https://doi.org/10.1007/s11104-007-9193-9
  41. Street, T.A., Doyle, R.B., Close, D.C. (2014). Biochar media addition impacts apple Rootstock growth and nutrition. HortScience, 49(9), 1188–1193. https://doi.org/10.21273/HORTSCI.49.9.1188 DOI: https://doi.org/10.21273/HORTSCI.49.9.1188
  42. Tammeorg, P., Bastos, A.C., Jeffery, S., Rees, F., Kern, J., Graber, E.R., Ventura, M., Kibblewhite, M., Amaro, A., Budai, A., Cordovil, C.M.d.S., Domene, X., Gardi, C., Gasco, G., Horak, J., Kammann, C., Kondrlova, E., Laird, D., Loureiro, S., Martins, M.A.S., Panzacchi, P., Prasad, M., Prodana, M., Puga, A.P., Ruysschaert, G., Sas Paszt, L., Silva, F.C., Teixeira, W.G., Tonon, G., Vedove, G,D., Zavalloni, C., Glaser, B., Verheijen, F.A.G., (2016). Biochars in soils: towards the required level of scientific understanding. J. Environment. Engineer. Landscape Manag., 25(2) 1–16. https://doi.org/10.3846/16486897.2016.1239582 DOI: https://doi.org/10.3846/16486897.2016.1239582
  43. Tan, Z., Linb, C.S.K., Jic, X., Raineyd, T.J. (2017). Returning biochar to fields: a review. Appl. Soil Ecol., 116, 1–11. https://doi.org/10.1016/j.apsoil.2017.03.017 DOI: https://doi.org/10.1016/j.apsoil.2017.03.017
  44. Thomas, S.C., Frye, S., Gale, N., Garmon, M., Launchbury, R., Machado, N., Melamed, S., Murray, J., Petroff, A., Winsborough, C. (2013). Biochar mitigates negative effects of salt additions on two herbaceous plant species. J. Environment. Manag., 129, 62–68. https://doi.org/10.1016/j.jenvman.2013.05.057 DOI: https://doi.org/10.1016/j.jenvman.2013.05.057
  45. Uzoma, K.C., Inoue, M., Andry, H., Fujimaki, H., Zahoor, A., Nishihara, E. (2011). Effect of cow manure biochar on maize productivity under sandy soil condition. Soil Use Manag., 27, 205–212. Available: https://onlinelibrary.wiley.com/doi/full/10.1111/j.1475-2743.2011.00340.x DOI: https://doi.org/10.1111/j.1475-2743.2011.00340.x
  46. Verheijen, F.G.A., Jeffery, S., Bastos, A.C., van der Velde, M., Diafas, I. (2010). Biochar application to soils – a critical scientific review of effects on soil properties, processes and functions. EUR 24099 EN. Office for the Official Publications of the European Communities, Luxembourg.

Downloads

Download data is not yet available.

Most read articles by the same author(s)

Similar Articles

<< < 5 6 7 8 9 10 11 12 13 14 > >> 

You may also start an advanced similarity search for this article.