Skip to main navigation menu Skip to main content Skip to site footer

Vol. 17 No. 5 (2018)

Articles

DEVELOPMENT OF SCLEROTINIA SCLEROTIORUM (LIB.) DE BARY ON STORED CARROT TREATED WITH PYTHIUM OLIGANDRUM DRECHSLER DETERMINED BY QPCR ASSAY

DOI: https://doi.org/10.24326/asphc.2018.5.10
Submitted: November 30, 2018
Published: 2018-11-30

Abstract

Sclerotinia scletoriorum (Lib.) de Bary is a serious pathogen of carrots that can cause up to 50% losses of stored roots. Fungicides were found not to be completely effective for its control and due to residues they are not permitted for the use in storage. Biological control agents such as Pythium oligandrum may be a chance. The aim of research was to determine the level of carrot infection with S. sclerotiorum during few-month storage with qPCR and the potential control ability of this pathogen by Polyversum WP containing oospores of P. oligandrum. We analyzed carrot roots in combinations treated with Polyversum WP on the field, fumigated with biopreparation before storage and untreated control. S. sclerotiorum developed on carrots treated and untreated with Polyversum WP. During the storage, pathogen was isolated from 44.4% samples and P. oligandrum from 53.8% ones, respectively in the range from 0.0001 to 130 200.0; pg and from 0.004 to 0.3440 pg per sample. The number of roots with S. sclerotiorum and degree of their infection increased with prolonged storage. Analyses suggest that Polyversum WP may potentially limit the growth of S. sclerotiorum.

References

  1. Adamicki, F., Nawrocka, B. (2015). Metodyka integrowanej produkcji marchwi. Państwowa Inspekcja Ochrony Roślin i Nasiennictwa Główny Inspektorat, Warszawa, https://piorin.gov.pl/publikacje/metodyki-ip/ [date of access: 12.03.2018].
  2. Al-Rawahi, A.K., Hancock, J.G. (1997). Rhizosphere compe- tence of Pythium oligandrum. Phytopathology, 87, 951–959, https://doi.org/10.1094/PHYTO. 1997.87.9.951.
  3. Bartczak, M. (2015). Zamgławianie obiektów przechowalniczych a przechowywanie warzyw. Available at: http://www.ogrodinfo.pl/technika/zamglawianie-obiektow-przechowalniczych-a-przechowywanie-warzyw [date of access: 12.03.2018].
  4. Boland, G.J., Hall, R. (1994). Index of plant hosts of Sclerotinia sclerotiorum. Can. J. Plant. Pathol., 16, 93–108, https://doi.org/10.1080/07060669409500766.
  5. Capote, N., Pastrana, A.M., Aguado, A., Sánchez-Torres, P. (2012). Molecular tools for detection of plant pathogenic fungi and fungicide resistance, Plant Pathology, Cumagun, C.J. (Ed.). InTech, 151–202. DOI: 10.5772/38011. Available at: https://www.intechopen. com/books/plant-pathology/molecular-tools-for-detection- of-plant-pathogenic-fungi-and-fungicide-resistance [date of access: 12.03.2018].
  6. Central Statistical Office (2016). Statistical Yearbook of Agriculture 2016, Warsaw. Available at: http://stat.gov. pl/files/gfx/portalinformacyjny/pl/defaultaktualnosci/ 5515/6/10/1/rocznik_statystyczny_rolnictwa_2016.pdf. [date of access: 12.03.2018].
  7. Cheah, L.H., Page, B.B.C., Shepherd, R. (1997). Chitosan coating for inhibition of sclerotinia rot of carrot. New Zeal. J. Crop Hortic. Sci., 25(1), 89–92, https://doi.org/10.1080/01140671.1997.9513992.
  8. Doyle, J.J., Doyle, J.L., (1990). Isolation of plant DNA from fresh tissue. Focus, 12, 13–15.
  9. Finlayson, J.E., Pritchard, M.K., Rimmer, S.R. (1989). Electrolyte leakage and storage decay of five carrot cultivars in response to infection by Sclerotinia sclerotiorum. Can. J. Plant. Pathol., 11(3), 313–316, https://doi.org/10.1080/07060668909501119.
  10. Fraga, D., Meulia, T., Fenster, S., (2014). Real-Time PCR. Current Protocols Essential Laboratory Techniques. Supplement 8. John Wiley & Sons. pp. 10.3.1–10.3.40. DOI: 10.1002/9780470089941.et1003s08.
  11. Geary, J.R. (1978). Host-parasite interactions between the cultivated carrot (Daucus carota L.) and Sclerotinia sclerotiorum (Lib.) de Bary. Ph.D. thesis, University of East Anglia , UK.
  12. Gerbore, J., Benhamou, N., Vallance, J., Le Floch, G., Grizard, D., Regnault-Roger, C., Rey, P. (2014). Biological control of plant pathogens: advantages and limitations seen through the case study of Pythium oligandrum. Environ. Sci. Pollut. Res., 21(7), 4847–4860, https://doi.org/10.1007/s11356-013-1807-6.
  13. Godfrey, S.A.C., Monds, R.D., Lash, D.T., Marshall, J.W., (2003). Identification of Pythium oligandrum using species-specific ITS rDNA PCR oligonucleotides. Mycol. Res., 107(7), 790–796, https://doi.org/10.1017/ S0953756203008104.
  14. https://bip.minrol.gov.pl/content/download/45979/261667/ version/1/file/Polyversum%20WP_zast.profesjonalne.pdf [date of access: 12.03.2018].
  15. Inbar, J., Menendez, A., Chet, I. (1996). Hyphal interaction between Trichoderma harzianum and Sclerotinia sclerotiorum and its role in biological control. Soil Biol. Biochem., 28(6), 757–763, https://doi.org/ 10.1016/ 0038-0717(96)00010-7.
  16. Kim, T.G., Knudsen, G.R. (2008). Quantitative real-time PCR effectively detects and quantifies colonization of sclerotia of Sclerotinia sclerotiorum by Trichoderma spp. Appl. Soil Ecol., 40(1), 100–108, https://doi.org/10.1016/j.apsoil.2008.03.013.
  17. Kora, C., McDonald, M.R., Boland, G.J. (2003). Sclerotinia rot of carrot. An example of phenological adaptation and biocyclic development by Sclerotinia sclerotiorum. Plant Dis., 87(5), 456–470, https://doi.org/10.1094/ PDIS.2003.87.5.456.
  18. Kora, C., McDonald, M.R., Boland, G.J. (2008). New progress in the integrated management of Sclerotinia rot of carrot. In: Integrated management of plant pests and diseases: Integrated management of diseases caused by fungi, phytoplasma and bacteria, Ciancio, A., Mukerji, K.G. (eds). Springer Verlag, Berlin, 243–264.
  19. Kunachowicz, H., Nadolna, I., Przygoda, B., Iwanow, K. (2017). Tabele składu i wartości odżywczej żywności. Wyd. 2. Wydawnictwo Lekarskie PZWL, Warszawa [in Polish].
  20. Lievens, B., Brouwer, M., Vanachter, A.C.R.C., Cammue, B.P.A, Thomma, B.P.H.J. (2006).
  21. Real-time PCR for detection and quantification of fungal and oomycete tomato pathogens in plant and soil samples. Plant Sci., 171, 155–165, http://dx.doi.org/10.1016/j.plantsci.2006.03.009.
  22. Madsen, A.M., de Neergaard, E. (1999). Interactions between the mycoparasite Pythium oligandrum and sclerotia of the plant pathogen Sclerotinia sclerotiorum. Eur. J. Plant. Pathol., 105(8),761–768, https://doi.org/10.1023/A:1008706401496.
  23. McDonald, M.R. (1994). Sclerotinia rot (white mold) of carrot. In: Diseases and pests of vegetable crop in Canada, Howard, H.J., Garland, J.A. Seaman, W.L. (eds). The Canadian Phytopathological Society and Entomological Society of Canada, Ottawa, 72–73.
  24. McLaren, D.L., Huang, H.C., Rimmer, S.R. (1996). Control of apothecial production of Sclerotinia sclerotiorum by Coniothyrium minitans and Talaromyces flavus. Plant Dis., 80(12), 1373–1378.
  25. Pritchard, M.K., Boese, D.E., Rimmer, S.R. (1992). Rapid cooling and field-applied
  26. fungicides for reducing losses in stored carrots caused by cottony soft rot. Can. J. Plant. Pathol., 14(2), 177–181, https://doi.org/10.1080/07060669209500895.
  27. Purdy, L.H. (1979). Sclerotinia sclerotiorum: History, diseases and symptomatology, host range, geographic distribution, and impact. Phythopathology, 69(8), 875–880. DOI: 10.1094/Phyto-69-875.
  28. Rey, P., Benhamou, N., Tirilly, Y. (1998). Ultrastructural and cytochemical investigation of asymptomatic infection by Pythium spp. Phythopathology, 88(3), 234–244. DOI: 10.1094/PHYTO.1998.88.3.234.
  29. Rey, P., Le Floch, G., Benhamou, N., Tirilly, Y. (2008). Pythium oligandrum biocontrol: its relationships with fungi and plants. In: Plant–microbe interactions, Ait Barka, E., Clément, C. (eds). Research Signpost, Kerala, India, 43–67.
  30. Ribeiro, W.R.C., Butler, E.E. (1992). Isolation of mycoparasitic species of Pythium with spiny oogonia from soil in California. Mycol. Res., 96(10), 857–862.
  31. Rogers, S.L., Atkins, S.D., West, J.S. (2009). Detection and quantification of airborne inoculum of Sclerotinia sclerotiorum using quantitative PCR. Plant Pathol., 58, 324–331. DOI: 10.1111/j.1365-3059.2008.01945.x.
  32. Rudnicki, F. (2011). FR-ANALWAR 4.3. Software based on Microsoft Excel. University of Science and Technology, Bydgoszcz, Poland.
  33. Saharan, G.S., Mehta, N. (2008). Sclerotinia diseases of crop plants: Biology, ecology and disease management. Springer Nrtherlands, Heidelberg.
  34. Suarez, M.B., Walsh, K., Boonham, N., O’Neill, T., Pearson, S., Barker, I. (2005). Development of real-time PCR (TaqMan) assays for the detection and quantification of Botrytis cinereain planta. Plant Physiol. Biochem., 43(9), 890–899.
  35. Takenaka, S., Sekiguchi, H., Nakaho, K., Tojo, M., Masunaka, A., Takahashi, H. (2008). Colonization of Pythium oligandrum in the tomato rhizosphere for biological control of bacterial wilt disease analyzed by real-time PCR and confocal laser-scanning microscopy. Phytopathology, 98(2), 187–195. DOI: 10.1094/PHYTO-98-2-0187.
  36. Vallance, J., Le Floch, G., Deniel, F., Barbier, G., Levesque, C.A., Rey, P. (2009). Influence of Pythium oligandrum biocontrol on fungal and oomycete population dynamics in the rhizosphere. Appl. Environ. Microbiol., 75(14), 4790–4800. DOI: 10.1128/AEM.02643-08.
  37. Van der Plaats-Niterink, A.J. (1981). Monograph of the genus Pythium. Stud. Mycol. 21, 1–242.

Downloads

Download data is not yet available.

Similar Articles

<< < 6 7 8 9 10 11 12 13 14 15 > >> 

You may also start an advanced similarity search for this article.