Skip to main navigation menu Skip to main content Skip to site footer

Vol. 21 No. 2 (2022)

Articles

In vitro seed germination and shoot proliferation of bat flower (Tacca chantrieri Andre)

DOI: https://doi.org/10.24326/asphc.2022.2.7
Submitted: January 27, 2021
Published: 2022-04-29

Abstract

Tacca chantrieri Andre, or bat flower, is a species from Taccaceae family that has unique inflorescences consisting of large, dark-colored bracts with long whiskers, making it suitable as ornamental pot plants. T. chantrieri leaves and rhizomes contain phytochemicals that have been reported to have medicinal properties. T. chantrieri is increasingly hard to find in their native habitat; their seeds have a very slow and low germination rate, whereas propagation in vivo by division takes a long time. A protocol is presented to optimize seed germination and in vitro propagation of T. chantrieri from West Borneo, Indonesia. We have developed a method to improve in vitro germination of freshly harvested T. chantrieri seeds. Pre-sowing treatment with 5 mg L –1 of GA3 for 5 × 24 h and addition of GA3 at 5 mg L–1 to the MS medium significantly promoted earlier and final germination up to >90% within 10 weeks after sowing compared to without GA3, or immersing in GA3 for shorter durations. MS media supplemented with indole acetic acid (IAA) at 0.5 mgL–1 and benzyl adenine (BA) at 1 or 2 mgL–1 was effective to induce shoot proliferation from in vitro germinated seeds; 7–10 shoots were produced after 12 weeks of culture. Shoot proliferation from basal shoot explants were best on MS supplemented with IAA at 0.5 mgL–1. The results of this study have provided a basis for further mass propagation efforts of T. chantrieri.

References

  1. Aasim, M., Hussain, N., Umer, E.M., Zubair, M., Hussain, S.B., Saeed, S., Rafique, T.S., Sancak, C. (2010). In vitro shoot regeneration of fenugreek (Trigonella foenum-graecum L.) using different cytokinins. Afr. J. Biotech., 9, 7174–7179.
  2. Al-Hawezy, M.S.N. (2013). The role of the different concentrations of GA3 on seed germination and seedling growth of loquat (Eriobotrya japonica L.). J. Agric. Vet. Sci., 4(5), 3–6. https://doi.org/10.9790/2380-0450306 DOI: https://doi.org/10.9790/2380-0450306
  3. Ajisyahputra, N.R., Palupi, E.R., Wiendi, N.M.A., Mulyono, J., Krisantini (2017). Evaluation of growth, flowering and seed morphology of bat flower Tacca chantrieri Andre. J. Trop. Crop Sci., 64–69. https://doi.org/10.29244/JTCS.4.2.64-69 DOI: https://doi.org/10.29244/jtcs.4.2.64-69
  4. Aygan, A., Dumanoglu, H. (2015). In vitro shoot proliferation and in vitro and ex vitro root formation of Pyrus elaeagrifolia Pallas. Front Plant Sci., 6, 225–239. https://doi.org/10.3389/FPLS.2015.00225. DOI: https://doi.org/10.3389/fpls.2015.00225
  5. Ayyub, C.M., Ziaf, K., Pervez, M.A., Amjad, M., Rasheed, S., Akkhtar, N. (2007). Effect of seed maturity and storability on viability and vigour in pea (Pisum sativum L.) seeds. In: Proceedings of International Symposium of Horticultural Industry in Pakistan 28th–30th March 2017. Institute of Horticultural Science, University of Agriculture, Faisalabad, Pakistan.
  6. Bashan, Y., de-Bashan, L.E. (2010). How the plant growth-promoting bacterium Azospririllum promotes plant growth – a critical assessment. Adv. Agron. 108, 77–135. https://doi.org/10.1016/S0065-2113(10)08002-8 DOI: https://doi.org/10.1016/S0065-2113(10)08002-8
  7. Cepkova, P.H., Vitamvas, J., Ciehmannova, I., Kisilova, J., Cusimamani, E.F., Milella, L. (2015). Simplified in vitro propagation protocol for Tacca leontopetaloides (L.) Kuntze and assessment of genetic uniformity of regenerated plantlets. Emir. J. Food Agric., 27(10), 736–743. https://doi.org/10.9755/ejfa.2015.06.350 DOI: https://doi.org/10.9755/ejfa.2015-06-350
  8. Charoensub, R., Thiantong, D., Phansiri, S. (2008). Micropropagation of bat flower plant Tacca chantrieri Andre. Kasetsart J. Nat. Sci., 42, 7–12.
  9. Chen, S.Y., Kuo, S.R., Chien, C.T. (2008). Roles of gibberellins and abscisic acid in dormancy and germination of red bayberry (Myrica rubra) seeds. Tree Physiol., 28(9), 1431–1439. https://doi.org/10.1093/TREEPHYS/28.9.1431 DOI: https://doi.org/10.1093/treephys/28.9.1431
  10. Clayton, P.W., Hubstenberger, J.F., Phillips, G.C. (1990). Micropropagation of members of the Cactaceae Subtribe Cactinae. J. Amer. Soc. Hort. Sci., 115(2), 337–343. https://doi.org/10.21273/JASHS.115.2.337 DOI: https://doi.org/10.21273/JASHS.115.2.337
  11. Cruz‐Tejada, D.M., Acosta‐Rojas, D.C., Stevenson, P.R. (2018). Are seeds able to germinate before fruit color ripening? Evidence from six Neotropical bird‐dispersed plant species. Ecosphere, 9(6), 1–18. https://doi.org/10.1002/ecs2.2174 DOI: https://doi.org/10.1002/ecs2.2174
  12. De Mello, A.M., Streck, N.A., Blankenship, E.E., Paparozzi, E.T. (2009). Gibberellic acid promotes seed germination in Penstemon digitalis cv. Husker Red. Hort. Sci., 44(3), 870–873. https://doi.org/10.21273/HORTSCI.44.3.870 DOI: https://doi.org/10.21273/HORTSCI.44.3.870
  13. Forbis, T.A., Floyd, S.K., Queiroz, A. 2002. The evolution of embryo size in Angiosperms and other seed plants: implications for the evolution of seed dormancy. Evolution, 56(11), 2112–2125. https://doi.org/10.1111/J.0014-3820.2002.TB00137.X DOI: https://doi.org/10.1111/j.0014-3820.2002.tb00137.x
  14. Gisbert, C., Prohens, J., Nuez, F. (2011). Treatments for improving seed germination in eggplant and related species. Acta Hortic., 898, 45–51. https://doi.org/10.17660/ACTAHORTIC.2011.898.4 DOI: https://doi.org/10.17660/ActaHortic.2011.898.4
  15. He, H., Lan, Q., Zhang, Y. (2002). In vitro propagation of Tacca chantrieri. J. Agric. Biol. Sci., 21(2), 108–110.
  16. Koné, M., Patat-Ochatt, E.M., Conreux, C., Sangwan, R.S., Ochatt., S.J. (2007). In vitro morphogenesis from cotyledon and epicotyl explants and flow cytometry distinction between landraces of Bambara groundnut [Vigna subterranea (L.) Verdc], an under-utilised grain legume. Plant Cell Tiss. Org. Cult., 88, 61–75. https://doi.org/10.1007/s11240-006-9179-y DOI: https://doi.org/10.1007/s11240-006-9179-y
  17. Krisantini, Wiendi N.M.A., Palupi E.R. (2017). Evaluation of horticultural traits and seed germination of Tacca chantrieri ‘André. Agric. Nat. Res., 51(3), 169–172. https://doi.org/10.1016/J.ANRES.2016.12.006 DOI: https://doi.org/10.1016/j.anres.2016.12.006
  18. Lafon-Placette, C., Kohler, C. (2014). Embryo and endosperm, partners in seed development. Curr. Opin. Plant Biol., 17, 64–69. https://doi.org/10.1016/J.PBI.2013.11.008 DOI: https://doi.org/10.1016/j.pbi.2013.11.008
  19. Mahajan, G., Mutti, N.K., Jha, P., Walsh, M., Chauhan, B.S. (2018). Evaluation of dormancy breaking methods for enhanced germination in four biotypes of Brassica tournefortii. Sci. Reports, 8(1), 17103. https://doi.org/10.1038/S41598-018-35574-2 DOI: https://doi.org/10.1038/s41598-018-35574-2
  20. Murrinie, E.D., Yudono, P., Purwantoro, A., Sulistyaningsih, E. (2019). Effect of fruit age and postharvest maturation storage on germination and seedling vigor of wood apple (Feronia limonia L. Swingle). Asian J. Agric. Biol., special issue, 196–204.
  21. Narayanaswamy, S., Siddaraju, R. (2011). Influence of spacing and mother plant nutrition on seed yield and quality of sweet corn (Zea mays var. rugosa). Mysore J. Agric. Sci., 45(2), 296–299.
  22. Park, S.Y., Kim, Y.W., Moon, H.K., Murthy, H.N., Choi, Y.H., Cho, H.M. (2008). Micropropagation of Salix pseudolasiogne from nodal explants. Plant Cell Tiss. Org. Cult., 93, 341–346. DOI: https://doi.org/10.1007/s11240-008-9362-4
  23. Peng, J., Jackson, E.M., Babinski, D.J., Risinger, A.L., Helms, G., Frantz, D.E., Mooberry, S.L. (2010). Evelynin, a cytotoxic benzoquinone-type retro-dihydrochalcone from Tacca chantrieri. J. Nat. Prod., 73(9), 1590–1592. https://doi.org/10.1021/NP100350S. DOI: https://doi.org/10.1021/np100350s
  24. Risinger, A.L., Peng, J., Rohena, C.C., Aguilar, H.R., Frantz, D.E., Mooberry, S.L. (2013). The bat flower: a source of microtubule destabilizing and stabilizing compounds with synergistic antiproliferative actions. J. Nat. Prod., 76(10), 1923–1929. https://doi.org/10.1021/NP4005079. DOI: https://doi.org/10.1021/np4005079
  25. Su, Y.H., Liu, Y.B., Zhang, X.S. (2011). Auxin cytokinin interaction regulates meristem development. Mol. Plant, 4(4), 616–625. https://doi.org/10.1093/MP/SSR007 DOI: https://doi.org/10.1093/mp/ssr007
  26. Subedi, C.K., Bhattarai, T. (2006). Effect of gibberellic acid on reserve food mobilization of maize (Zea mays L. var Arun-2) endosperm during germination. Himalayan J. Sci., 1(2), 99–102. https://doi.org/10.3126/HJS.V1I2.205 DOI: https://doi.org/10.3126/hjs.v1i2.205
  27. Yildirim, H., Calar, N., Onay, A. (2018). An effective protocol for in vitro germination and seedling development of lentisk (Pistacia lentiscus L.). Acta Sci. Pol. Hortorum Cultus, 17(4), 3–13. https://doi.org/10.24326/asphc.2018.4.1 DOI: https://doi.org/10.24326/asphc.2018.4.1
  28. Yokosuka, A., Mimaki, Y., Sashida, Y. (2002). Steroidal and pregnane glycosides from the rhizomes of Tacca chantrieri. J. Nat. Prod., 65(9), 1293–1298. https://doi.org/10.1021/np020094l DOI: https://doi.org/10.1021/np020094l

Downloads

Download data is not yet available.

Similar Articles

<< < 1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.