Skip to main navigation menu Skip to main content Skip to site footer

Vol. 21 No. 1 (2022)

Articles

Yield, quality and plant nutrient contents of lettuce under different deficit irrigation conditions

DOI: https://doi.org/10.24326/asphc.2022.1.10
Submitted: March 15, 2021
Published: 2022-02-28

Abstract

This research was carried out in two separate periods (spring and autumn) in 2018 to reveal the lettuce response of yield, some quality, and plant nutrient content under different water stress conditions. In the study, the effects of different irrigation levels applied with traditional deficit irrigation (TI) and partial rootzone drying (PRD) techniques on lettuce growing were investigated. Lettuce (Lactuca sativa var. crispa cv. ‘Campania’) was used as plant material. There were traditional farmers’ method of irrigation (TF), 125% traditional irrigation (TI-125), 100% traditional irrigation (TI-100), 75% traditional irrigation (TI-75), 50% traditional irrigation (TI-50), 125% partial root-zone drying technique (PRD-125), 100% partial root-zone drying technique (PRD-100), 75% partial root-zone drying technique (PRD-75), 50% partial root-zone drying (PRD-50) technique treatments. According to the results of the research, it was determined that different water stress applications were effective on the criteria examined in lettuce. The highest total and marketable yield values were obtained from the TF application, the second-highest values from the TI-125 application, and the lowest yield from the PRD-50 in the autumn period. In the spring season, the lowest yield was obtained from TI-50 and PRD-50 applications. Based on the treatments, the yield values were decreased and changes were experienced with the increase of the water stress in other examined criteria.

References

  1. Acar, B., Paksoy, M., Türkmen, O., Seymen, M. (2008). Irrigation and nitrogen level affect lettuce yield in greenhouse condition. Afr. J. Biotechnol., 7(24), 4450–4453. https://doi.org/10.5897/AJB08.740
  2. Agbemafle, R., Owusu-Sekyere, J.D., Bart-Plange, A. (2015). Effect of deficit irrigation and storage on the nutritional composition of tomato (Lycopersicon esculentum Mill. cv. Pectomech). Croatian J. Food Tech. Biotech. Nutr., 10(1–2), 59–65.
  3. Ahmadi, M., Souri, M.K. (2018). Growth and mineral elements of coriander (Coriandrum sativum L.) plants under mild salinity with different salts. Acta. Physiol. Plant., 40(11), 94–99. https://doi.org/10.1007/s11738-018-2773-x DOI: https://doi.org/10.1007/s11738-018-2773-x
  4. Ahmadi, M., Souri, M.K. (2020). Growth characteristics and fruit quality of chili pepper under higher electrical conductivity of nutrient solution induced by various salts. AGRIVITA, J. Agric. Sci., 42(1), 143–152. https://doi.org/10.17503/agrivita.v42i1.2225 DOI: https://doi.org/10.17503/agrivita.v42i1.2225
  5. Al-Bayati, Y.F.A., Sahin, M. (2018). Konya İli Açık Tarla Koşullarında Marul Bitkisinin Su-Verim Parametrelerinin Belirlenmesi [Determination of water-yield parameters of lettuce plant in Konya open field conditions]. Toprak Su Dergisi, 7(2), 38–45 [in Turkish]. https://doi.org/10.21657/topraksu.460725 DOI: https://doi.org/10.21657/topraksu.460725
  6. Blanch, M., Dolores Alvarez, M., Sanchez-Ballesta, M.T., Escribano, M.I., Merodio, C. (2017). Water relations, short-chain oligosaccharides and rheological properties in lettuces subjected to limited water supply and low temperature stress. Sci. Hortic. 225, 726–735. https://doi.org/10.1016/j.scienta.2017.08.002 DOI: https://doi.org/10.1016/j.scienta.2017.08.002
  7. Casa, B.R., Rouphael, Y. (2014). Effects of partial root-zone drying irrigation on yield, fruit quality, and water-use efficiency in processing tomato. J. Hortic. Sci. Biotech., 89(4), 389–396. http://dx.doi.org/10.1080/14620316.2014.11513097 DOI: https://doi.org/10.1080/14620316.2014.11513097
  8. Casanova, M.P., Messing, I., Joel, A., Cañete, A.M. (2009). Methods to estimate lettuce evapotranspiration in greenhouse conditions in the central zone of Chile. Chilean J. Agric. Res., 69(1), 60–70. http://dx.doi.org/10.4067/S0718-58392009000100008 DOI: https://doi.org/10.4067/S0718-58392009000100008
  9. Cosgrove, W.J., Loucks, D.P. (2015). Water management: current and future challenges and research directions. Water Resour. Res., 51(6), 4823–4839. https://doi.org/10.1002/2014WR016869 DOI: https://doi.org/10.1002/2014WR016869
  10. Dasgan, H.Y., Kirda, C. (2007). Partial rootzone drying (PRD) is a new technique for soilless grown vegetables. Acta Hortic., 747(747), 433–440. http://dx.doi.org/10.17660/ActaHortic.2007.747.54 DOI: https://doi.org/10.17660/ActaHortic.2007.747.54
  11. Ebrahimi, M., Souri, M.K., Mousavi, A., Sahebani, N. (2021). Biochar and vermicompost improve growth and physiological traits of eggplant (Solanum melongena L.) under deficit irrigation. Chem. Biol. Technol. Agric., 8(19), 1–14. https://doi.org/10.1186/s40538-021-00216-9 DOI: https://doi.org/10.1186/s40538-021-00216-9
  12. Fereres, E., Soriano, M.A. (2007). Deficit irrigation for reducing agricultural water use. J. Exp. Bot., 58(2), 147–159. https://doi.org/10.1093/jxb/erl165 DOI: https://doi.org/10.1093/jxb/erl165
  13. Hatamian M., Rezaei Nejad A., Kafi M., Souri M.K., Shahbazi K. (2019). Growth characteristics of ornamental Judas tree (Cercis siliquastrum L.) seedling under different concentrations of lead and cadmium in irrigation water. Acta Sci. Pol. Hortorum Cultus, 18(2), 87–96. https://doi.org/10.24326/asphc.2019.2.8 DOI: https://doi.org/10.24326/asphc.2019.2.8
  14. Hatamian, M., Rezaei Nejad, A., Kafi, M., Souri, M.K., Shahbazi, K. (2020). Nitrate improves hackberry seedling growth under cadmium application. Heliyon, 6(1), e03247. https://dx.doi.org/10.1016/j.heliyon.2020.e03247 DOI: https://doi.org/10.1016/j.heliyon.2020.e03247
  15. Howladar, S.M. (2018). Potassium humate improves physio-biochemical attributes, defense systems activities and water-use efficiencies of eggplant under partial rootzone drying. Sci. Hortic., 240, 179–185. https://doi.org/10.1016/j.scienta.2018.06.020 DOI: https://doi.org/10.1016/j.scienta.2018.06.020
  16. Jiang, C., Johkan, M., Hohjo, M., Tsukagoshi, S., Maruo, T. (2017). A correlation analysis on chlorophyll content and SPAD value in tomato leaves. HortRes., 71, 37–42. http://dx.doi.org/10.20776/S18808824-71-P37
  17. Jiménez-Ariasa, D., García-Machado, F.J., Morales-Sierra, S., Luis, J.C., Suarez, E., Hernández, M., Valdés, F., Borges, A.A. (2019). Lettuce plants treated with L-pyroglutamic acid increase yield under water deficit stress. Environ. Exp. Bot., 158, 215–222. https://doi.org/10.1016/j.envexpbot.2018.10.034 DOI: https://doi.org/10.1016/j.envexpbot.2018.10.034
  18. Kacar, B., Inal, A. (2008). Plant analysis. Nobel Publications, 1241, 892.
  19. Kacar, B. (2009). Soil Analysis. Nobel Publications, 968, 72.
  20. Kang, S., Liang, Z., Hu, W., Zhang, J. (1998). Water use efficiency of controlled alternate irrigation on root-divided maize plants. Agric. Water Manag., 38, 69–76. https://doi.org/10.1016/S0378-3774(98)00048-1 DOI: https://doi.org/10.1016/S0378-3774(98)00048-1
  21. Karipçin, M.Z., Şatir, N.Y. (2016). Su Stresi Koşullarında Yetiştirilen Marul Sebzesinin Verim ve Besin İçeriğine Arbusküler Mikorizal Fungus (AMF)’un Etkileri [Effect of arbuscular mycorrhizal fungi (AMF) on growth and nutrient uptake of lettuce (Lactuca sativa) under water stress]. Y. Y. U. J. Agr. Sci., 26(3), 406–413 [in Turkish].
  22. Kizil, U., Genç, L., İnalpulat, M., Şapolyo, D., Mirik, M. (2012). Lettuce (Lactuca sativa L.) yield prediction under water stress using artificial neural network (ANN) model and vegetation indices. Zemdirbyste, 99(4), 409–418.
  23. Kirda, C., Cetin, M., Dasgan, Y., Topcu, S., Kaman, H., Ekici, B., Derici, M.R., Ozguven, A.I. (2004). Yield response of greenhouse grown tomato to partial root drying and conventional deficit irrigation. Agric. Water Manag., 69(3), 191–201. https://doi.org/10.1016/j.agwat.2004.04.008 DOI: https://doi.org/10.1016/j.agwat.2004.04.008
  24. Kuslu, Y., Dursun, A., Sahin, U., Kiziloglu, F.M., Turan, M. (2008). Short communication. Effect of deficit irrigation on curly lettuce grown under semiarid conditions. Spanish J. Agric. Res., 6(4), 714–719. https://doi.org/10.5424/sjar/2008064-367 DOI: https://doi.org/10.5424/sjar/2008064-367
  25. Liu, R., Yang, Y., Wang, Y.-S., Wang, X.-C., Rengel, Z., Zhang, W.J., Shu, L.Z. (2020). Alternate partial rootzone drip irrigation with nitrogen fertigation promoted tomato growth, water and fertilizer-nitrogen use efficiency. Agric. Water Manag., 233, 1–8. https://doi.org/10.1016/j.agwat.2020.106049 DOI: https://doi.org/10.1016/j.agwat.2020.106049
  26. López, J., Vega Gálvez, A., Torres, M.J., Lemus-Mondaca, R., Quispe-Fuentes, I., Di Scala, K. (2013). Effect of dehydration temperature on physico-chemical properties and antioxidant capacity of goldenberry (Physalis peruviana L.). Chilean J. Agric. Res., 73(3), 293–300. https://doi.org/10.4067/S0718-58392013000300013 DOI: https://doi.org/10.4067/S0718-58392013000300013
  27. Madeira, A.C., Ferreira, A., de Varennes, A., Vieira, M.I. (2003). SPAD meter versus tristimulus colorimeter to estimate chlorophyll content and leaf color in sweet pepper. Commun. Soil Sci. Plant Anal., 34(17–18), 2461–2470. https://doi.org/10.1081/CSS-120024779 DOI: https://doi.org/10.1081/CSS-120024779
  28. Marschner, P. (2012). Marschner’s mineral nutrition of higher plants. 3rd Ed. Elsevier, London, UK, pp. 651. https://doi.org/10.1016/C2009-0-63043-9 DOI: https://doi.org/10.1016/C2009-0-63043-9
  29. Mengel, K., Kirkby, E.A., Kosegarten, H., Apel, T. (2001). Principles of plant nutrition. 5th ed. Kluwer Academic Publishers, Dordrecht, The Netherlands, pp. 849. https://doi.org/10.1007/978-94-010-1009-2 DOI: https://doi.org/10.1007/978-94-010-1009-2
  30. Mohammadipour, N., Souri, M.K. (2019). Beneficial effects of glycine on growth and leaf nutrient concentrations of coriander (Coriandrum sativum) plants. J. Plant Nutr., 42(14), 1637–1644. https://doi.org/10.1080/01904167.2019.1628985 DOI: https://doi.org/10.1080/01904167.2019.1628985
  31. Naiji, M., Souri, M.K. (2018). Nutritional value and mineral concentrations of sweet basil under organic compared to chemical fertilization. Acta Sci. Pol. Hortorum Cultus, 17(2), 167–175. https://doi.org/10.24326/asphc.2018.2.14 DOI: https://doi.org/10.24326/asphc.2018.2.14
  32. Parvizi, H., Sepaskhah, A.R., Ahmadi, S.H. (2016). Physiological and growth responses of pomegranate tree (Punica granatum (L.) cv. Rabab) under partial root zone drying and deficit irrigation regimes. Agric. Water Manag., 163(C), 146–158. https://doi.org/10.1016/j.agwat.2015.09.019 DOI: https://doi.org/10.1016/j.agwat.2015.09.019
  33. Pejić, B., Mačkić, K., Pavković, S., Ljevnaić-Mašić, B., Aksić, M., Gvozdanović-Varga, J. (2016). Water-yield relations of drip irrigated watermelon in temperate climatic conditions. Contemporary Agriculture, 65(1–2), 53–59. https://doi.org/10.1515/contagri-2016-0009 DOI: https://doi.org/10.1515/contagri-2016-0009
  34. Psarras, G., Chartzoulakis, K., Kasapakis, I., Kloppmann, W. (2014). Effect of different irrigation techniques and water qualities on yield, fruit quality and health risks of tomato plants. Acta Hortic., 1038(16), 601–608. https://doi.org/10.17660/ActaHortic.2014.1038.76 DOI: https://doi.org/10.17660/ActaHortic.2014.1038.76
  35. Mansuroğlu, G.S., Bozkurt, S., Kara, M., Telli, S. (2011). The effects of nitrogen forms and rates under different irrigation levels on yield and plant growth of lettuce. J. Cell Plant. Sci., 1(1), 33–40.
  36. Sezen, S.M., Yazar, A., Tekin, S. (2019). Physiological response of red pepper to different irrigation regimes under drip irrigation in the Mediterranean region of Turkey. Sci. Hortic., 245, 280–288. https://doi.org/10.1016/j.scienta.2018.10.037 DOI: https://doi.org/10.1016/j.scienta.2018.10.037
  37. Şen, F., Kinay Teksür, P., Okşar, R.E., Güleş, A., Kaygisiz Aşçioğul, T. (2016). Effects of plant growth promoting microorganisms on yield and quality parameters of lettuce (Lactuca sativa L.). J. Adnan Mend. Univ. Agric. Fac., 13(1), 35–40. https://doi.org/10.25308/aduziraat.278365 DOI: https://doi.org/10.25308/aduziraat.278365
  38. Şenyiğit, U., Kaplan, D. (2013). Impact of different irrigation water levels on yield and some quality parameters of lettuce (Lactuca sativa L. var. longifolia cv.) under unheated greenhouse condition. Infrastruct. Ecol. Rural Areas, (2)4, 97–107.
  39. Souri, M.K., Alipanahi, N., Hatamian, M., Ahmadi, M., Tesfamariam, T. (2018a). Elemental profile of heavy metals in garden cress, coriander, lettuce and spinach, commonly cultivated in Kahrizak, South of Tehran-Iran. Open Agric., 3(1), 32–37. https://doi.org/10.1515/opag-2018-0004 DOI: https://doi.org/10.1515/opag-2018-0004
  40. Souri, M.K., Hatamian, M. (2019). Aminochelates in plant nutrition: a review. J. Plant Nutr. 42(1), 67–78. https://doi.org/10.1080/01904167.2018.1549671 DOI: https://doi.org/10.1080/01904167.2018.1549671
  41. Souri, M.K., Hatamian, M., Tesfamariam, T. (2019). Plant growth stage influences heavy metal accumulation in leafy vegetables of garden cress and sweet basil. Chem. Biol. Technol. Agric., 6(1), 25. https://doi.org/10.1186/s40538-019-0170-3 DOI: https://doi.org/10.1186/s40538-019-0170-3
  42. Souri, M.K., Römheld, V. (2009). Split daily applications of ammonium can not ameliorate ammonium toxicity in tomato plants. Hortic. Environ. Biotechnol., 50(5), 384–391.
  43. Souri, M.K., Römheld, V., Neumann, G. (2009). Nitrogen forms and water consumption in tomato plants. Hortic. Environ. Biotechnol., 50(5), 377–383.
  44. Souri, M.K., Rashidi, M., Kianmehr, M.H. (2018b). Effects of manure-based urea pellets on growth, yield, and nitrate content in coriander, garden cress, and parsley plants. J. Plant Nutr., 41(11), 1405–1413. https://doi.org/10.1080/01904167.2018.1454471 DOI: https://doi.org/10.1080/01904167.2018.1454471
  45. Souri, M.K., Sooraki, F.Y., Moghadamyar, M. (2017). Growth and quality of cucumber, tomato, and green bean under foliar and soil applications of an aminochelate fertilizer. Hortic. Environ. Biotechnol., 58(6), 530–536. https://doi.org/10.1007/s13580-017-0349-0 DOI: https://doi.org/10.1007/s13580-017-0349-0
  46. Souri, M.K., Tohidloo, G. (2019). Effectiveness of different methods of salicylic acid application on growth characteristics of tomato seedlings under salinity. Chem. Biol. Technol. Agric., 6(1), 26. https://doi.org/10.1186/s40538-019-0169-9 DOI: https://doi.org/10.1186/s40538-019-0169-9
  47. Sun, Y., Holm, P.E., Liu, F. (2014). Alternate partial rootzone drying irrigation improves fruit quality in tomatoes. Hortic. Sci. (Prague), 41(4), 185–191. https://doi.org/10.17221/259/2013-HORTSCI DOI: https://doi.org/10.17221/259/2013-HORTSCI
  48. Topakli Solak, F. (2016). Çanakkale şartlarında tarla ve tünel altında kıvırcık salata (Lactuca sativa var. crispa) yetiştirme olanakları [Growing opportunities of crispy lettuce (Lactuca sativa var. crispa) in field and tunnels on Çanakkale conditions]. Master thesis, Selcuk University, Konya, pp. 46. Available: http://acikerisimarsiv.selcuk.edu.tr:8080/xmlui/handle/123456789/3777 [date of access: 13.02.2021].
  49. Topcu, S., Kirda, C., Dasgan, H.Y., Kaman, H. Cetin, M., Yazici, A., Bacon, M.A. (2007). Yield response and N-fertiliser recovery of tomato grown under deficit irrigation. Eur. J. Agron., 26(1), 64–70. https://doi.org/10.1016/j.eja.2006.08.004 DOI: https://doi.org/10.1016/j.eja.2006.08.004
  50. Uyan, B. (2011). Değişik vejetasyon dönemlerinde farklı su kısıtlarının ıspanakta meydana getirdiği fizyolojik, morfolojik ve kimyasal değişikliklerin belirlenmesi [The effects of different water deficits on physiological, morphological and chemical changes in different growth phase of spinach]. Master thesis, Namik Kemal University, Tekirdağ, pp. 106. Available: http://hdl.handle.net/20.500.11776/917 [date of access: 01.12.2020]. [In Turkish].
  51. Vural, H., Esiyok, D., Duman, I. (2000). Kültür sebzeleri (sebze yetiştirme) [Cultured vegetables (growing vegetables)]. Ege University, Ege University Press, Bornova, İzmir, pp. 440 [in Turkish].
  52. Wang, Y., Liu, F., Jensen, C.R. (2012a). Comparative effects of partial root-zone irrigation and deficit irrigation on phosphorus uptake in tomato plants. J. Hortic. Sci. Biotech., 87(6), 600–604. https://doi.org/10.1080/14620316.2012.11512918 DOI: https://doi.org/10.1080/14620316.2012.11512918
  53. Wang, Z., Liu, F., Kang, S., Jensen, C.R. (2012b). Alternate partial root-zone drying irrigation improves nitrogen nutrition in maize (Zea mays L.) leaves. Environ. Exp. Bot., 75, 36–40. https://doi.org/10.1016/j.envexpbot.2011.08.015 DOI: https://doi.org/10.1016/j.envexpbot.2011.08.015
  54. Yıldırım, M., Bahar, E., Demirel, K. (2015). The effects of different irrigation levels on the yield and physical properties of lettuce cultivars (Lactuca sativa var. campania). OMU J. Agric. Fac., 3(1), 29–34.

Downloads

Download data is not yet available.