Skip to main navigation menu Skip to main content Skip to site footer

Vol. 19 No. 5 (2020)

Articles

Effect of nitrogen fertilization and plant density on seed yield and fat content and quality of pot marigold (Calendula officinalis L.) under climatic conditions of Belarus

DOI: https://doi.org/10.24326/asphc.2020.5.1
Submitted: April 4, 2019
Published: 2020-10-29

Abstract

This paper presents the results of a study on the effect of different N fertilization and seeding rates on yield and some quality parameters (of seeds) of pot marigold. A field experiment was carried out during 2014–2016 under soil and climatic conditions of Belarus (Priluki Research Station near Minsk). The experiment included the following factors: N fertilization rate 40, 60, 80, 100 kg ha–1; plant density per 1 m2 (30, 50, 70, 90).  The experiment was set up as a randomized block design in five replicates, with a single plot area of 8.0 m2. The soil in Priluki was characterized by medium nutrient availability (at the level: P = 120–127, K = 164–174, Mg = 59–66 mg kg–1 soil). Regardless of the experimental factors, weather conditions had a significant impact on pot marigold productivity. The year 2016, characterized by an even distribution of rainfall during the growing season and moderate air temperatures, proved to be most beneficial for pot marigold productivity and quality. Hydrological conditions in the other years (2014 and 2015) there was a slight drought. The year 2014 should be considered to be cold, whereas the second year of the study (2015) was moderately warm. Best production effects (seed yield, fat yield) were obtained at rates of 60–80 kg N ha–1. This rate of nitrogen fertilization also modified the fatty acid composition, contributing to a higher content of linoleic acid and calendic acid (∑ α-calendic and β-calendic acids). A nitrogen rate of 100 kg N ha–1 proved to be irrational in terms of the quantity and quality of pot marigold yield. A density of 50–70 plants per 1 m2 resulted in the highest seed and fat yield per unit area. A plant density of 50 plants per 1 m2 resulted in the highest content of C18 unsaturated acids (stearic acid, oleic acid, linoleic acid) in the oil.

References

  1. Ahmad, A., Abdin, M.Z. (2000). Interactive effect of Sulphur and nitrogen on the oil and protein contents and on the fatty acid profiles of oil in the seeds of rapeseed (Brassica campestris L.) and mustard (Brassica juncea L. Czern. and Coss.). J. Agron. Crop Sci., 185(1), 49–54. DOI: 10.1046/j.1439-037x.2000.00401.x
  2. Angelini, L.G., Mosheni, E., Colonna, G., Belloni, P., Bonari, E. (1997). Variation in agronomic characteristics and seed oil composition of new oilseed crops in central Italy. Ind. Crop Prod., 6, 313–323.
  3. AOCS – American Oil Chemists Society (1997). Preparation of methyl esters of fatty acids. 52 Official Method Ce 2-66. AOCS Press, Champaign.
  4. Bac, S., Koźmiński, C., Rojek, M. (1993). Agrometeorologia. PWN, Warszawa, 32–33.
  5. Biermann, U., Bornscheuer, U., Meier, M.A.R., Metzger, J.O., Schäfer, H.J. (2011). Oils and fats as renewable raw materials in chemistry. Angew. Chem. In. Ed., 50, 3854–3871. DOI: 10.1002/anie.201002767
  6. Biermann, U., Butte, W., Holtgrefe, R., Feder, W., Metzger, J.O. (2010). Esters of calendula oil and tung oil as reactive diluents for alleyd resins. Eur. J. Lipid Sci. Techol., 112, 103–109. DOI: 10.1002/ejlt.200900142
  7. Chauhan, A., Kumar, V. (2007). Effect of graded levels of nitrogen and VAM on growth and flowering in calendula (Calendula officinalis L.). J. Ornam. Hortic., 10(1), 61–63.
  8. Cromack, H.T.H., Smith, J.M. (1998). Calendula officinalis – production potential and crop agronomy in southern England. Ind. Crops Prod., 7, 223–229. DOI: 10.1016/s0926-6690(97)00052-6
  9. Dordas, C.A. (2010). Variation of physiological determinants of yield in linseed in response to nitrogen fertilization. Ind. Crops Prod., 31(3), 455–465. DOI: 10.1016/j.indcrop.2010.01.008
  10. Dulf, F.V., Pamfil, D., Baciu, A.D., Pintea, A. (2013). Fatty acid composition of lipids in pot marigold (Callendula officinalis L.) seed genotypes. Chem. Cent. J., 7(1), 8. DOI: 10.1186/1752-153X-7-8
  11. Estaji, A., Souri, M.K., Omidbaigi, R. (2011). Evaluation of different levels of nitrogen and flower pruning on milk thistle (Silybum marianum L.) yield and fatty acids. J. Med. Spice Plants, 4, 170–175.
  12. Estaji, A., Souri, M.K., Omidbaigi, R. (2016). Evaluation of nitrogen and flower pruning effects on growth, seed yield and active substances of milk thistle. J. Essent. Oil-Bear. Plants, 19(3), 678–685. DOI: 10.1080/0972060X.2014.981592
  13. Fontes, A.L., Pimentel, L.L., Simoes, C.D., Gomes, A.M., Rodriguez-Alcalá, L.M. (2017). Evidences and perspectives in the utilization of CLNA isomers as bioactive compound in foods. Crit. Rev. Food Sci. Nutr., 57(12), 2611–2622. DOI: 10.1080/10408398.2015.1063478
  14. Forcella, F., Papiernik, S.K., Gesch, R.W. (2012). Postemergence herbicides for calendula. Weed Technol., 26(3), 566–569. DOI: 10.1614/WT-D-11-00133.1
  15. Gesch, R.W. (2013). Growth and yield response of calendula (Calendula officinalis L.) to sowing date in the northern US. Ind. Crops Prod., 45, 248–252. DOI: 10.1016/j.indcrop.2012.11.046
  16. Hreczuch, W., Mittelbach, M., Holas, J., Soucek, J., Bekierz, G. (2000). Produkcja i główne kierunki przemysłowego wykorzystania estrów metylowych kwasów tłuszczowych [Production and main directions of industrial use of fatty acid methyl esters]. Przem. Chem., 79(4), 111–114 [in Polish].
  17. Janssens, R.J., Vernooij, W.P. (2001). Calendula officinalis: a natural source for pharmaceutical, oleochemical and functional compounds. Inform, 12, 468–477.
  18. Jevdović, R., Todorović, G., Kostić, M., Protić, R., Lekić, S., Zivanović, T., Secanski, M. (2013). The effects of location and the application different mineral fertilization on seed yield and quality of pot marigold (Calendula officinalis L.). Turk. J. Field Crops, 18(1), 1–7.
  19. Jiang, Y., Caldwell, C.D., Falk, K.C. (2014). Camelina seed quality in response to applied nitrogen, genotype and environment. Can. J. Plant Sci., 94(5), 971–980. DOI: 10.4141/cjps2013-396
  20. Jiang, Y., Caldwel, C.D., Falk, K.C., Lada, R.R., MacDonald, D. (2013). Camelina yield and quality response to combined nitrogen and sulfur. Agron. J., 105, 1847–1852. DOI: 10.2134/agronj2013.0240
  21. Johnson, J.M., Gesch, R.W. (2013). Calendula and camelina response to nitrogen fertility. Ind. Crops Prod., 43, 684–691. DOI: 10.1016/j.indcrop.2012.07.056
  22. Joly, R., Forcella, F., Peterson, D., Eklund, J. (2013). Planting depth for oilseed calendula. Ind. Crops Prod., 42, 133–136. DOI: 10.1016/j.indcrop.2012.05.016
  23. Kobori, M., Ohnishi-Kameyama, M., Akimoto, Y., Yukizaki, C., Yoshidas, M. (2008). Alpha-eleostearic acid and its dihydroxy derivative are major apoptosis-inducting components of bitter gourd. J. Agric. Food Chem., 56(22), 10515–10520. DOI: 10.1021/jf8020877
  24. Kohno, H., Suzuki, R., Yasui, Y., Hosokawa, M., Mijashita, K., Tanaka, T. (2004). Pomegranate seed oil rich in conjugated linolenic acid suppresses chemically induced colon carcinogenesis in rats. Cancer Sci., 95, 481–486. DOI: 10.1111/j.1349-7006.2004.tb03236.x
  25. Król, B. (2011). Yield and the chemical composition of flower heads of pot marigold (Calendula officinalis L. cv. Orange King) depending on nitrogen fertilization. Acta Sci. Pol. Hortorum Cultus, 10(2), 235–243.
  26. Król, B. (2016). Effect of potassium fertilization on yield, content and fat quality of pot marigold (Calendula officinalis L.) seeds. Polish J. Agron., 27, 64–70. DOI: 10.26114/pja.iung.312.2016.27.08
  27. Król, B. (2017a). Influence of nitrogen fertilization on the seed yield and the content and quality of fat in pot marigold (Calendula officinalis L.) cultivars. Agron. Sci., 72(3), 85–98. DOI: 10.24326/as.2017.3.7
  28. Król, B. (2017b). Azot i siarka jako czynniki kształtujące plon nasion oraz zawartość i jakość tłuszczu nagietka lekarskiego – potencjalnego surowca olejarskiego [Nitrogen and sulphur as determinants of the seed yield, content and quality of fat in pot marigold – a potential oil source]. Ann. UMSC, sec E, 72(2), 29–38 [in Polish]. DOI: 10.24326/as.2017.2.3
  29. Król, B. (2017c). Plon i jakość nasion nagietka lekarskiego (Calendula officinalis L.) w zależności od zagęszczenia roślin w łanie [Yield and quality of pot marigold (Calendula officinalis L.) seeds depending on plant density in the field]. Agron. Sci., 72(3), 11–25 [in Polish]. DOI: 10.24326/as.2017.3.2
  30. Król, B., Paszko, T. (2017). Harvest date as a factor affecting crop yield, oil content and fatty acid composition of the seeds of calendula (Calendula officinalis L.) cultivars. Ind. Crops Prod., 97, 242–251. DOI: 10.1016/j.indcrop.2016.12.029
  31. Król, B., Paszko, T., Król, A. (2016). Conjugated linolenic acid content in seeds of some pot marigold (Calendula officinalis L.) cultivars grown in Poland. Farmacia, 64, 6, 881–886.
  32. Li, Q., Wang, H., Ye, S.H., Xiao, S., Xie, Y.P., Liu, X., Wang, J.H. (2013). Induction of apoptosis and inhibition of invasion in choriocarcinoma JEG-3 cells by α-calendic acid and β-calendic acid. Prostaglandins Leokot. Essent. Fat. Acids, 89, 367–376. DOI: 10.1016/j.plefa.2013.06.007
  33. Martin, R.J., Deo, B. (2000). Effect of plant population on calendula (Calendula officinalis L.) flower production. New Zeland J. Crop Hortic. Sci., 28, 37–44. DOI: 10.1080/01140671.2000.9514120
  34. Metzger, J.O., Bornscheuer, U. (2006). Lipids as renewable resources: current state of chemical and biotechnological conversion and diversification. Appl. Microbiol. Biotechnol., 71, 13–22. DOI: 10.1007/s00253-006-0335-4
  35. Mili, R., Sable, A.S. (2003). Effect of planting density and nitrogen levels on growth and flower production of calendula (Calendula officinalis L.). Indian J. Hortic., 60(4), 343–345.
  36. Mulley, B.P., Khadabadi, S.S., Banarase, N.B. (2009). Phytochemical constituents and pharmacological activities of Calendula officinalis Linn (Asteraceae). Trop. J. Pharm. Res., 8, 455–465. DOI: 10.4314/tjpr.v8i5.48090
  37. Ruiz de Clavijo, E. (2005). The reproductive strategies of the heterocarpic annual Calendula arvensis (Asteraceae). Acta Oecol., 28, 119–126. DOI: 10.1016/j.actao.2005.03.004
  38. Saha, S.S., Ghosh, M. (2011). Antioxidant effect of vegetable oils containing conjugated linolenic acid isomers against induced tissue lipid peroxidation and inflammation in rat model. Chem. Biol. Interact., 190, 109–120. DOI: 10.1016/j.cbi.2011.02.030
  39. Shakib, A., Nejad, A.R., Khalighi, A.H.M. (2010). Changes in seed and oil yield of Calendula officinalis L. as affected by different levels of nitrogen and plant density. Res. Crops, 11(3), 728–732.
  40. Seghatoleslami, M.J., Mousavi, G.R. (2009). The effect of sowing date and plant density on seed flower yield of pot marigold (Calendula officinalis L.). Acta Hortic., 826, 371–376. DOI: 10.17660/ActaHortic.2009.826.52
  41. Souri, M.K., Hatamian, M. (2019). Aminochelates in plant nutrition; a review. J. Plant Nutr., 42(1), 67–78. DOI: 10.1080/01904167.2018.1549671
  42. Souri, M.K., Naiji, M., Kianmehr, M.H. (2019). Nitrogen release dynamics of a slow released urea pellet and its effect on growth, yield and nutrient uptake of sweet basil (Ocimum basilicum L.). J. Plant Nutr., 42(6), 604–614. DOI: 10.1080/01904167.2019.1568460
  43. Szwejkowska, B., Bielski, S. (2012). Effect of nitrogen and magnesium fertilization on the development and yields of pot marigold (Calendula officinalis L.). Acta Sci. Pol. Hortorum Cultus, 11(2), 141–148.
  44. Wilen, R.W., Barl, B., Slinkard, A.E., Bandara, M.S. (2004). Feasibility of cultivation calendula as a dual purpose industrial oilseed and medicinal crop. Acta Hortic., 629, 199–206. DOI: 10.17660/ActaHortic.2004.629.26
  45. Yasui, Y., Hosokawa, M., Kohno, H., Tanaka, T., Miyashita, K. (2006). Troglitazone and 9cis, 11trans, 13trans-inducting effects on different colon cancer cel lines. Chemotherapy, 52, 220–225. DOI: 10.1159/000094865
  46. Yuan, G.F., Chen, X.E., Li, D. (2014). Conjugated linolenic acids and their bioactivities: a review. Food Funct., 5(7), 1360–1368. DOI: 10.1039/c4fo00037d
  47. Zanetti, F., Monti, A., Berti, M.T. (2013). Challenges and opportunities for new industrial oilseed crops in EU-27, A review. Ind. Crops Prod., 50, 580–595. DOI: 10.1016/j.indcrop.2013.08.030

Downloads

Download data is not yet available.

Similar Articles

<< < 35 36 37 38 39 40 41 42 43 44 > >> 

You may also start an advanced similarity search for this article.