Abstract
Minimizing the negative environmental impact of agrochemicals necessitates new strategies to achieve sustainable food production. Consequently, zinc oxide nanoparticles (ZnONPs) and plant growth-stimulating bacteria (Bacillus subtilis) have been proposed as a method to enhance the growth parameters. The effect of ZnONPs at a concentration range of 0.2–1.4 mg cm–3 on the planktonic growth of B. subtilis bacteria, production of the hormone indole-3-acetic acid, biofilm formation, the ability to biodegrade complex compounds such as Evans Blue, and an increase in oxidative stress was assessed. Concentrations of 0.2 and 0.4 mg cm−3 ZnONPs were used to further test the simultaneous effects of ZnONPs and B. subtilis on red cabbage growth. Moreover, the influence of the simultaneous use of ZnONPs and B. subtilis on seed germination, physiological characteristics, and the content of minerals in red cabbage seedlings grown in the soil was examined. The simultaneous use of ZnONPs and B. subtilis bacteria improves the number of germinated seeds, the length of red cabbage seedlings, and the content of photosynthetic pigments and antioxidants compared with the control or single treatment of seeds with only B. subtilis or ZnONPs. The simultaneous use of B. subtilis and zinc oxide nanoparticles resulted in a higher content of zinc and sodium in red cabbage seedlings, while the content of macronutrients such as Mg and K, and micronutrients such as Fe, Mn, and Co was lower or close to the control value. The combination of B. subtilis + 0.2 mg ZnONPs turned out to be better than B. subtilis + 0.4 mg ZnONPs, as it produced the highest number of germinated seeds, greater plant and root length, and a higher content of chlorophylls, phenolic compounds, and antioxidants. The results indicate that ZnONPs enhance the role of B. subtilis as plant growth-promoting bacteria.
References
- Adelanwa, E.B., Medugu, J.M. (2015). Variation of the nutrient composition of red and green cabbage (Brassica oleracea) with respect to age at harvest. Int. J. Appl. Agric. Sci., 7, 183–189.
- Ahmed, A., Hasnain, S. (2010). Auxin-producing Bacillus sp.: auxin quantification and effect on the growth of Solanum tuberosum. Pure Appl. Chem., 82, 313–319. https://doi.org/10.1351/PAC-CON-09-02-06
- Amooaghaie R., Norouzi M., Saeri M. (2017). Impact of zinc and zinc oxide nanoparticles on the physiological and biochemical processes in tomato and wheat. Botany, 95, 441–455. https://doi.org/10.1139/cjb-2016-0194
- Awasthi, A., Bansal, S., Jangir, L.K., Awasthi, G., Awasthi, K.K., Awasthi, K. (2017). Effect of ZnO nanoparticles on germination of Triticum aestivum seeds. Macromol. Symp., 376(1), 1700043. https://doi.org/10.1002/masy.201700043
- Azam, A., Ahmed, A., Oves, M., Khan, M., Habib, S., Memic, A. (2012). Antimicrobial activity of metal oxide nanoparticles against Gram-positive and Gram-negative bacteria: A comparative study. Int. J. Nanomed., 7, 6003–6009. https://doi.org/10.2147/IJN.S35347
- Basu, A., Prasad, P., Das, S.N., Kalam, S., Sayyed, R.Z., Reddy, M.S., El Enshasy, H. (2021). Plant growth promoting rhizobacteria (PGPR) as green bioinoculants: recent developments, constraints, and prospects. Sustainability, 13(3), 1140. https://dx.doi.org/10.3390/su13031140
- Belouchrani, I., Belouchrani, A.S., Mameri, N., Abdi, N., Grib, H., Lounici, H., Drouiche, N., (2016). Phytoremediation of soil contaminated with Zn using Canola (Brassica napus L). Ecol. Eng., 95, 43–49. https://doi.org/10.1016/j.ecoleng.2016.06.064
- Boddupalli, A., Tiwari, R., Sharma, A., Singh, S., Prasanna, R., Nain, L. (2017). Elucidating the interactions and phytotoxicity of zinc oxide nanoparticles with agriculturally beneficial bacteria and selected crop plants. Folia Microbiol., 62, 253–262. https://doi.org/10.1007/12223-017-0495-x
- Brand-Williams, W., Cuvelier, M.E., Berset, C.L. (1995). Use of a free radical method to evaluate antioxidant activity. LWT-Food Sci. Technol., 28(1), 25–30. https://doi.org/10.1016/S0023-6438(95)80008-5
- Cabra Cendales, T., Rodríguez González C.A., Villota Cuásquer, C.P., Tapasco Alzate O.A., Hernández Rodríguez, A. (2017). Bacillus effect on the germination and growth of tomato seedlings (Solanum lycopersicum L). Acta Biol. Colomb., 22(1), 37–44. http://dx.doi.org/10.15446/abc.v22n1.57375
- Canaparo, R., Foglietta, F., Limongi, T., Serpe, L. (2020). Biomedical applications of reactive oxygen species generation by metal nanoparticles. Materials, 14(1), 53. https://doi.org/10.3390/ma14010053
- Chavan, S., Nadanathangam, V. (2019). Effects of nanoparticles on plant growth-promoting bacteria in Indian agricultural soil. Agronomy, 9, 140. https://doi.org/10.3390/agronomy9030140
- Chen, J., Dou, R., Yang, Z., You, T., Gao, X., Wang, L. (2018) Phytotoxicity and bioaccumulation of zinc oxide nanoparticles in rice (Oryza sativa L). Int. J. Plant Physiol. Biochem., 130, 604–612. https://doi.org/10.1016/j.plaphy.2018.08.019
- De la Rosa, G., López-Moreno, M.L., de Haro, D., Botez, C.E., Peralta-Videa, J.R., Gardea-Torresdey, J.L. (2013). Effects of ZnO nanoparticles in alfalfa, tomato, and cucumber at the germination stage: root development and X-ray absorption spectroscopy studies. Pure Appl. Chem., 85(12), 2161–2174. https://doi.org/10.1351/pac-con-12-09-05
- Dimkpa, C.O., Zeng, J., McLean, J.E., Britt, D.W., Zhan, J., Anderson, A.J. (2012). Production of indole-3-acetic acid via the indole-3-acetamide pathway in the plant-beneficial bacterium Pseudomonas chlororaphis O6 is inhibited by ZnO nanoparticles but enhanced by CuO nanoparticles. Appl. Environ. Microbiol., 78, 1404–1410. https://doi.org/10.1128/aem.07424-11
- Elhaj-Baddar, Z., Unrine, J.M. (2018). Functionalized-ZnO-nanoparticle seed treatments to enhance growth and Zn content of wheat (Triticum aestivum) seedlings. J. Agric. Food Chem., 66(46), 12166–12178. https://doi.org/10.1021/acs.jafc.8b03277
- Faizan, M., Faraz, A., Yusuf, M., Khan, S.T., Hayat, S. (2018). Zinc oxide nanoparticle-mediated changes in photosynthetic efficiency and antioxidant system of tomato plants. Photosynthetica, 56, 678–686. http://dx.doi.org/10.1007/s11099-017-0717-0
- Feigl, G., Kumar, D., Lehotai, N., Tugyi, N., Molnár, Á., Ördög, A., Kolbert, Z. (2013). Physiological and morphological responses of the root system of Indian mustard (Brassica juncea L. Czern.) and rapeseed (Brassica napus L.) to copper stress. Ecotoxicol. Environ. Saf., 94, 179–189. https://doi.org/10.1016/j.ecoenv.2013.04.029
- Felici, C., Vettori, L., Giraldi, E., Forino, L.M.C., Toffanin, A., Tagliasacchi, A.M., Nuti, M. (2008). Single and coinoculation of Bacillus subtilis and Azospirillum brasilense on Lycopersicon esculentum: effects on plant growth and rhizosphere microbial community. Appl. Soil Ecol., 40(2), 260–270. http://doi.org/10.1016/j.apsoil.2008.05.002.
- Garcia-López, J.I., Zavala-García, F., Olivares-Sáenz, E., Lira-Saldívar, R.H., Díaz Barriga-Castro, E., Ruiz- Torres, N.A., Ramos-Cortez, E., Vázquez-Alvarado, R., Niño-Medina, G. (2018). Zinc oxide nanoparticles boosts phenolic compounds and antioxidant activity of Capsicum annuum L. during germination. Agronomy, 8(10), 215. https://doi.org/10.3390/agronomy8100215
- Ghasemian, E., Naghoni, A., Rahvar, H., Kialha, M., Tabaraie, B. (2015). Evaluating the effect of copper nanoparticles in inhibiting Pseudomonas aeruginosa and Listeria monocytogenes biofilm formation. Jundishapur J. Microbiol., 8, e17430. https://doi.org/10.5812/jjm.17430
- Gudadhe, N.N., Suthar, K.P., Thanki, J.D. (2018). Synthesis and evaluation of ZnO nanoparticles through green and chemical methods and its effect on rice. XXI Biennial National Symposium of Indian Society of Agronomy. MPUAT, Udaipur, 24–26.
- Habash, M.B., Goodyear, M.C., Park, A.J., Surette, M.D., Vis, E.C., Harris, R.J., Khursigara, C.M. (2017). Potentiation of tobramycin by silver nanoparticles against Pseudomonas aeruginosa biofilms. Antimicrob. Agents Chemother., 61, 415–417. https://doi.org/10.1128/aac.00415-17
- Haris, Z., Ahmad, I. (2017). Impact of metal oxide nanoparticles on beneficial soil microorganisms and their secondary metabolites. Int. J. Life Sci. Res., 3, 1020–1030. http://dx.doi.org/10.21276/ijlssr.2017.3.3.10
- Hashem, A., Tabassum, B., Abd Allah, E.F. (2019). Bacillus subtilis: A plant-growth promoting rhizobacterium that also impacts biotic stress. Saudi J. Biol. Sci., 26(6), 1291–1297. https://doi.org/10.1016/j.sjbs.2019.05.004
- Hosseinpour, A., Haliloglu, K., Tolga Cinisli, K., Ozkan, G., Ozturk, H.I., Pour-Aboughadareh, A., Poczai, P. (2020). Application of zinc oxide nanoparticles and plant growth promoting bacteria reduces genetic impairment under salt stress in tomato (Solanum lycopersicum L. ‘Linda’). Agriculture, 10(11), 521. http://dx.doi.org/10.3390/agriculture10110521
- Izydorczyk, G., Saeid, A., Mironiuk, M., Witek-Krowiak, A., Kozioł, K., Grzesik, R., Chojnacka, K. (2022). Sustainable method of phosphorus biowaste management to innovative biofertilizers: A solution for circular economy of the future. Sustain. Chem. Pharm., 27, 100634. https://doi.org/10.1016/j.scp.2022.100634
- Javaid, S., Ayyaz, M.K., Rehman, Z.U., Naveed, U., Raza, A.A., Jamil, A., Rasheed, S. (2020). Biofortification through zinc oxide nanoparticles, a sustainable approach for enhancing the productivity of rice: a review. J. Agric. Food Secur., 2, 1–12.
- Jha, S., Pudake. R.N. (2016). Molecular mechanism of plant-nanoparticle interactions. Plant Nanotechnol. Princ. Pract., 12, 1337–1354. https://doi.org/10.1007/978-3-319-42154-4_7
- Kang, S.M., Hamayun, M., Khan, M.A., Iqbal, A., Lee, I.J. (2019a). Bacillus subtilis JW1 enhances plant growth and nutrient uptake of Chinese cabbage through gibberellins secretion. JABFQ, 92. http://dx.doi.org/10.5073/JABFQ.2019.092.023
- Kang, S.M., Shahzad, R., Bilal, S., Khan, A.L., Park, Y.G., Lee, K.E., Lee, I.J. (2019b). Indole-3-acetic-acid and ACC deaminase producing Leclercia adecarboxylata MO1 improves Solanum lycopersicum L. growth and salinity stress tolerance by endogenous secondary metabolites regulation. BMC Microbiology, 19, 1–14. https://doi.org/10.1186/s12866-019-1450-6
- Khan, A.R., Mustafa, A., Hyder, S., Valipour, M., Rizvi, Z.F., Gondal, A.S., Daraz, U. (2022). Bacillus spp. as bioagents: Uses and application for sustainable agriculture. Biology, 11(12), 1763. https://doi.org/10.3390/biology11121763
- Kouhi, S. M.M., Lahouti, M., Ganjeali, A., Entezari, M.H. (2015). Long-term exposure of rapeseed (Brassica napus L.) to ZnO nanoparticles: anatomical and ultrastructural responses Environ. Sci. Pollut. Res., 22, 10733–10743. https://doi.org/10.1007/s11356-015- 4306-0
- Krzepiłko, A., Matyszczuk, K.M., Święciło, A. (2023). Effect of sublethal concentrations of zinc oxide nanoparticles on Bacillus cereus. Pathogens, 12(3), 485. https://doi.org/10.3390/pathogens12030485
- Krzepiłko, A., Zych-Wężyk, I., Molas, J., Skwaryło-Bednarz, B., Święciło, A., Skowrońska, M. (2016). The effect of iodine biofortification on selected biological quality parameters of lettuce and radish seedlings. Acta Sci. Pol. Hortorum Cultus, 15(3), 3–16. Available: https://czasopisma.up.lublin.pl/asphc/article/view/2439/1707 [date of access: 15.03.2024].
- Lamuela-Raventós R.M. (2017). Folin-Ciocalteu method for the measurement of total phenolic content and antioxidant capacity. In: Measurement of antioxidant activity and capacity. Recent trends and applications. R. Apak, E. Capanoglu, F. Shahidi (eds). John Wiley & Sons, 107–115. https://doi.org/10.1002/9781119135388.ch6
- Lewis Oscar, F., Mubarak Ali, D., Nithya, C., Priyanka, R., Gopinath, V., Alharbi, N.S., Thajuddin, N. (2015). One pot synthesis and anti-biofilm potential of copper nanoparticles (CuNPs) against clinical strains of Pseudomonas aeruginosa. Biofouling, 31, 379–391. https://doi.org/10.1080/08927014.2015.1048686
- Lin, D., Xing, B. (2007). Phytotoxicity of nanoparticles: Inhibition of seed germination and root growth. Environ. Pollut., 150(2), 243–250. https://doi.org/10.1016/j.envpol.2007.01.016
- Liu, L., Nian, H., Lian, T. (2022). Plants and rhizospheric environment: affected by zinc oxide nanoparticles (ZnONPs). Plant. Physiol. Biochem., 185, 91–100. https://doi.org/10.1016/j.plaphy.2022.05.032
- Long, X.X., Yang, X.E., Ni, W.Z., Ye, Z.Q., He, Z.L., Calvert, D.V., Stoffella, J.P. (2003). Assessing zinc thresholds for phytotoxicity and potential dietary toxicity in selected vegetable crops. Commun. Soil Sci. Plant Anal., 34, 1421–1434. http://dx.doi.org/10.1631/jzus.2007.B0001
- Ma, W., Peng, D., Walker, S.L., Cao, B., Gao, C.H., Huang, Q., Cai, P. (2017). Bacillus subtilis biofilm development in the presence of soil clay minerals and iron oxides. NPJ Biofilms Microbiomes, 4, 4. https://doi.org/10.1038/s41522-017-0013-6
- Mahajan, P., Dhoke, S.K., Khanna, A.S. (2011). Effect of nano-ZnO particle suspension on growth of mung (Vigna radiata) and gram (Cicer arietinum) seedlings using plant agar method. J. Nanotechnol., 7, 1–7. http://dx.doi.org/10.1155/2011/696535
- Mahamuni-Badiger P.P., Patil P.M., Badiger M.V., Patel P.R., Thorat-Gadgil B.S., Pandit A., Bohara R.A. (2019). Biofilm formation to inhibition: Role of zinc oxide-based nanoparticles. Mater. Sci. Eng. C. Mater. Biol., 108, 110319. http://doi.org/10.1016/j.msec.2019.110319.
- Mahapatra, S., Yadav, R., Ramakrishna, W. (2022). Bacillus subtilis impact on plant growth, soil health and environment: Dr. Jekyll and Mr. Hyde. J. Appl. Microbiol., 132, 3543–3562. https://doi.org/10.1016/j.procbio.2018.12.034
- Mardanova, A.M., Hadieva, G.F., Lutfullin, M.T., Khilyas, I.V.E., Minnullina, L.F., Gilyazeva, A.G., Sharipova, M.R. (2016). Bacillus subtilis strains with antifungal activity against the phytopathogenic fungi. Agric. Sci., 8(1), 1–20. http://dx.doi.org/10.4236/as.2017.81001
- Matyszczuk, K.M., Krzepiłko, A. (2022). Model study for interaction of sublethal doses of zinc oxide nanoparticles with environmentally beneficial bacteria Bacillus thuringiensis and Bacillus megaterium. Int. J. Mol. Sci., 23(19), 11820. https://doi.org/10.3390/ijms231911820
- Mirzaei, H., Darroudi, M. (2017). Zinc oxide nanoparticles: biological synthesis and biomedical applications. Ceram. Int., 43, 907–914. https://doi.org/10.1016/j.ceramint.2016.10.051
- Mukherjee, A., Pokhrel, S., Bandyopadhyay, S., Mädler, L., Peralta-Videa, J.R., Gardea-Torresdey, J.L. (2014). A soil mediated phytotoxicological study of iron doped zinc oxide nanoparticles (FeZnO) in green peas (Pisum sativum L.). J. Chem. Eng., 258, 394–401. http://doi.org/10.1016/j.cej.2014.06.112
- Naher, J., Chowdhury, S.A., Mamun, A.A., Mahmud, N., Shumi, W., Khan, R.A. (2014). A comparative study on the biofilm formation of Enterobacter agglomerans and Serretia rubideae in different environmental parameter under single culture condition. Open J. Med. Microbiol., 4, 70–76. http://dx.doi.org/10.4236/ojmm.2014.41008
- Ni, Z., Kim, E.D., Chen, Z.J. (2009). Chlorophyll and starch assays. Protocol Exchange. Nature, https://doi.org/10.1038/nprot.2009.12.
- Paździoch-Czochra, M. (2003). Relationship of demethylation processes to veratric acid concentration and cell density in cultures of Rhodococcus erythropolis. Cell Biol. Int., 27, 325–336. https://doi.org/10.1016/S1065-6995(02)00282-2
- Pereira, S.I.A., Abreu, D., Moreira, H., Vega, A., Castro, P.M.L. (2020). Plant growth-promoting rhizobacteria (PGPR) improve the growth and nutrient use efficiency in maize (Zea mays L.) under water deficit conditions. Heliyon, 6(10). https://doi.org/10.1016/j.heliyon.2020.e05106
- Pérez-García, L.A., Sáenz-Mata, J., Fortis-Hernández, M., Navarro-Muñoz, C.E., Palacio-Rodríguez, R., Preciado-Rangel, P. (2023). Plant-growth-promoting rhizobacteria improve germination and bioactive compounds in cucumber seedlings. Agronomy, 13(2), 315. http://dx.doi.org/10.3390/agronomy13020315
- Plaksenkova, I., Kokina, I., Petrova A., Jermaļonoka, M., Gerbreders, V., Krasovska, M. (2020). The impact of zinc oxide nanoparticles on cytotoxicity, genotoxicity, and miRNA expression in barley (Hordeum vulgare L.). Seedlings. Sci. World J., 2020, 6649746. http://doi.org/10.1155/2020/6649746
- Prajapati, B.J., Patel, S.B., Patel, R.P., Ramani, V.P., 2018. Effect of zinc nano-fertilizer on growth and yield of wheat (Triticum aestivum L.) under saline irrigation condition. Agropedology, 28(1), 31–37. http://dx.doi.org/10.47114/j.agroped.2018.jun5
- Prasad, T.N.V.K.V., Sudhakar, P., Sreenivasulu, Y., Latha, P., Munaswamy, V., Reedy K.R., Sreeprasad, T.S., Sajanlal, P.R., Pradeep, T. (2012). Effect of nanoscale zinc oxide particles on the germination, growth and yield of peanut. J. Plant Nutr., 35, 905–927. https://doi.org/10.1080/01904167.2012.663443
- Qayyum, S., Oves, M., Khan, A.U. (2017). Obliteration of bacterial growth and biofilm through ROS generation by facilely synthesized green silver nanoparticles. PLoS One, 12, e0181363. https://doi.org/10.1371/journal.pone.0181363
- Qin, Y., Angelini, L.L., Chai, Y. (2022). Bacillus subtilis cell differentiation, biofilm formation and environmental prevalence. Microorganisms, 10(6), 1108. https://doi.org/10.3390/microorganisms10061108
- Rajput, V.D., Chernikova, N., Minkina, T., Gorovtsov, A., Fedorenko, A., Mandzhieva, S., Bauer, T., Tsitsuashvili, V., Beschetnikov, V., Wong, M.H. (2023). Biochar and metal-tolerant bacteria in alleviating ZnO nanoparticles toxicity in barley. Environ. Res., 220, 115243. http://doi.org/10.1016/j.envres.2023.115243
- Rajput, V.D., Singh, A., Minkina, T., Rawat, S., Mandzhieva, S., Sushkova, S., Upadhyay, S.K. (2021). Nano-enabled products: challenges and opportunities for sustainable agriculture. Plants, 10, 2727. https://doi.org/10.3390/plants10122727
- Raskar, S., Shankar, L. (2014). Effect of zinc oxide nanoparticles on cytology and seed germination in onion. Int. J. Curr. Microbiol. App. Sci., 3(2), 467–473.
- Raza, S.H., Shahzadi, A., Iqbal, M., Shafiq, F., Mahmood, A., Anwar, S., Ashraf, M. (2022). Foliar application of nano-zinc oxide crystals improved zinc biofortification in cauliflower (Brassica oleracea L. var. botrytis). Appl. Nanosci., 12(6), 1803–1813. https://doi.org/10.1007/s13204-022-02455-0
- Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M., Rice-Evans, C. (1999). Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med., 26(9–10), 1231–1237. https://doi.org/10.1016/S0891-5849(98)00315-3
- Saberi-Rise, R., Moradi-Pour, M. (2020). The effect of Bacillus subtilis Vru1 encapsulated in alginate–bentonite coating enriched with titanium nanoparticles against Rhizoctonia solani on bean. Int. J. Biol. Macromol., 152,1089–1097. https://doi.org/10.1016/j.ijbiomac.2019.10.197
- Sarkhosh, S., Kahrizi, D., Darvishi, E., Tourang, M., Haghighi-Mood, S., Vahedi, P., Ercisli, S. (2022). Effect of zinc oxide nanoparticles (ZnONPs) on seed germination characteristics in two Brassicaceae family species: Camelina sativa and Brassica napus L. J. Nanometer., 1–15. http://dx.doi.org/10.1155/2022/1892759
- Seyed S., R., Khoramdel, S. (2016). Effects of nano-zinc oxide and seed inoculation by plant growth promoting rhizobacteria (PGPR) on yield, yield components and grain filling period of soybean (Glycine max L.). Iran J. Field Crops Res., 13, 738–753. https://doi.org/10.22067/gsc.v13i4.32491
- Shah, A. A., Aslam, S., Akbar, M., Ahmad, A., Khan, W.U., Yasin, N.A., Ali, S. (2021). Combined effect of Bacillus fortis IAGS 223 and zinc oxide nanoparticles to alleviate cadmium phytotoxicity in Cucumis melo. Int. J. Plant Physiol. Biochem., 158, 1–12. https://doi.org/10.1016/j.plaphy.2020.11.011
- Shaymurat, T., Gu, J., Xu, C., Yang, Z., Zhao, Q., Liu, Y., Liu, Y., (2012). Phytotoxic and genotoxic effects of ZnO nanoparticles on garlic (Allium sativum L.): a morphological study. Nanotoxicology, 6, 241–248. https://doi.org/10.3109/17435390.2011.570462
- Singleton, V.L., Orthofer, R., Lamuela-Raventos, R.M. (1999). Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteu reagent. Method. Enzymol., 299, 152–178. http://dx.doi.org/10.1016/S0076-6879(99)99017-1
- Solanki, P., Laura, J.S. (2018). Effect of ZnO nanoparticles on seed germination and seedling growth in wheat (Triticum aestivum). J. Pharmacogn. Phytochem., 7(5), 2048–2052.
- Stuiver, C.E.E., Posthumus, F.S., Parmar, S., Shahbaz, M., Hawkesford, M.J., Kok, L.J.D. (2014). Zinc exposure has differential effects on uptake and metabolism of sulfur and nitrogen in Chinese cabbage. J. Plant. Nutr. Soil. Sc., 177(5), 748–757. http://dx.doi.org/10.1002/jpln.201300369
- Sun, Z., Xiong, T., Zhang, T., Wang, N., Chen, D., Li, S. (2019). Influences of zinc oxide nanoparticles on Allium cepa root cells and the primary cause of phytotoxicity. Ecotoxicology, 28, 175–188. https://doi.org/10.1007/s10646-018-2010-9
- Talebian, N., Amininezhad, S.M., Doudi, M. (2013). Controllable synthesis of ZnO nanoparticles and their morphology-dependent antibacterial and optical properties. J. Photochem. Photobiol B., 20, 66–73. https://doi.org/10.1016/j.jphotobiol.2013.01.004
- Tanveer, Y., Yasmin, H., Nosheen, A., Ali, S., Ahmad, A. (2022). Ameliorative effects of plant growth promoting bacteria, zinc oxide nanoparticles and oxalic acid on Luffa acutangula grown on arsenic enriched soil. Environ. Pollut., 300, 118889. https://doi.org/10.1016/j.envpol.2022.118889
- Tsavkelova, E.A., Klimova, S.Y., Cherdyntseva, T.A. and Netrusov, A.I., 2006. Microbial producers of plant growth stimulators and their practical use: a review. Appl. Biochem. Microbiol., 42, 117–126. http://dx.doi.org/10.1134/S0003683806020013
- Turan, M., Ekinci, M., Yildirim, E., Güneş, A., Karagöz, K., Kotan, R., Dursun, A. (2014). Plant growth-promoting rhizobacteria improved growth, nutrient, and hormone content of cabbage (Brassica oleracea) seedlings. Turk. J. Agric. For., 38(3), 327–333. http://dx.doi.org/10.3906/tar-1308-62
- Umar, W., Hameed, M.K., Aziz, T., Maqsood, M.A., Bilal, H.M., Rasheed, N. (2021). Synthesis, characterization and application of ZnO nanoparticles for improved growth and Zn biofortification in maize. Arch. Agron. Soil Sci., 67(9), 1164–1176. http://dx.doi.org/10.1080/03650340.2020.1782893
- Wang, P., Menzies, N.W., Lombi, E., McKenna, B.A., Johannessen, B., Glover, C.J., Kappen, P., Kopittke, P.M. (2013). Fate of ZnO nanoparticles 640 in soils and cowpea (Vigna unguiculata). Environ. Sci. Technol. 2013, 47, 13822–13830.
- Wang, X.P., Li, Q.Q., Pei, Z.M., Wang, S.C. (2018). Effects of zinc oxide nanoparticles on the growth, photosynthetic traits, and antioxidative enzymes in tomato plants. Biol. Plant., 62, 801–808. http://dx.doi.org/10.1007/s10535-018-0813-4
- White, J.F., Torres, M.S., Verma, S.K., Elmore, M.T., Kowalski, K.P., Kingsley, K.L. (2019). Evidence for widespread microbivory of endophytic bacteria in roots of vascular plants through oxidative degradation in root cell periplasmic spaces. In: Singh, A.K., Kumar, A., Singh, P.K. (eds). PGPR amelioration in sustainable agriculture. Woodhead Publ., 167–193. https://doi.org/10.1016/B978-0-12-815879-1.00009-4
- Xia, J., Wang, Q., Luo, Q., Chen, Y., Liao, X.R., Guan, Z.B. (2019). Secretory expression and optimization of Bacillus pumilus CotA-laccase mutant GWLF in Pichia pastoris and its mechanism on Evans blue degradation. Process Biochem., 78, 33–41. https://doi.org/10.1016/j.procbio.2018.12.034
- Xiang, L., Zhao, H.M., Li, Y.W., Huang, X.P., Wu, X.L., Zhai, T., Mo, C.H. (2015). Effects of the size and morphology of zinc oxide nanoparticles on the germination of Chinese cabbage seeds. Environ. Sci. Pollut. Res., 22, 10452–10462. https://doi.org/10.1007/s11356-015-4172-9
Downloads
Download data is not yet available.
-
Ratibor Štrbanović,
Dobrivoj Poštić,
Marijenka Tabaković,
Jasmina Knežević,
Ljubiša Živanović,
Rade Stanisavljević,
Effects of pre-sowing seed treatments for improving germination and the growth of pepper and tomato seedlings
,
Acta Scientiarum Polonorum Hortorum Cultus: Vol. 20 No. 1 (2021)
-
Murat Güneri,
Zeynel Dalkılıç,
Effects of salicylic acid application on germination, growth and development of rough lemon (Citrus jambhiri Lush.) under salt stress
,
Acta Scientiarum Polonorum Hortorum Cultus: Vol. 22 No. 2 (2023)
-
Amal Bouallègue,
Fatma Souissi,
Issam Nouairi,
Monia Souibgui,
Zouhaier Abbes,
Haythem Mhadhbi,
PHYSIOLOGICAL AND BIOCHEMICALS CHANGES MODULATED BY SEEDS’ PRIMING OF LENTIL (Lens culinaris L.) UNDER SALT STRESS AT GERMINATION STAGE
,
Acta Scientiarum Polonorum Hortorum Cultus: Vol. 18 No. 5 (2019)
-
Burhan Ozturk,
Kenan Yıldız,
Halil Erdem,
Orhan Karakaya,
Ahmet Ozturk,
AMINOETHOXYVINYLGLYCINE AND FOLIAR ZINC TREATMENTS PLAY A KEY ROLE IN PRE-HARVEST DROPS AND FRUIT QUALITY ATTRIBUTES OF ‘WILLIAM’S PRIDE’ APPLE
,
Acta Scientiarum Polonorum Hortorum Cultus: Vol. 18 No. 2 (2019)
-
Irfan Afzal,
Karim Yar Abbasi,
Azma Iqbal,
Adnan Younis,
Muhammad Amir Bakhtavar,
Hafeez Ur Rehman,
ENHANCEMENT OF ZINNIA SEED GERMINATION AND SEEDLING EMERGENCE THROUGH MAGNETIC SEED STIMULATION
,
Acta Scientiarum Polonorum Hortorum Cultus: Vol. 15 No. 5 (2016)
-
Anna Krzepiłko,
Roman Prażak,
Katarzyna Matyszczuk,
Magdalena Dyduch-Siemińska,
The effect of zinc oxide nanoparticles on the growth and development of Stevia plants cultured in vitro
,
Acta Scientiarum Polonorum Hortorum Cultus: Vol. 23 No. 3 (2024)
-
Hasan Sardar,
Safina Naz,
Shaghef Ejaz,
Omer Farooq,
Atique-ur Rehman,
Muhammad Sameen,
Gulzar Akhtar,
Effect of foliar application of zinc oxide on growth and photosynthetic traits of cherry tomato under calcareous soil conditions
,
Acta Scientiarum Polonorum Hortorum Cultus: Vol. 20 No. 1 (2021)
-
Vahid Rahimi,
Mehdi Mohebodini,
Mahdi Behnamian,
Shiva Azizinia,
THE RELATIONSHIP BETWEEN MORPHOLOGICAL TRAITS AND SEED YIELD OF IRANIAN GARDEN CRESS ACCESSIONS
,
Acta Scientiarum Polonorum Hortorum Cultus: Vol. 18 No. 3 (2019)
-
Mohammadreza Maleki,
Mohammadjavad Seghatoleslami,
Gholamreza Mousavi,
Hassan Feizi,
AGRONOMIC AND QUALITATIVE TRAITS OF SAFFRON AND CUMIN IN RESPONSE TO INTERCROPPING
,
Acta Scientiarum Polonorum Hortorum Cultus: Vol. 19 No. 5 (2020)
-
Hanna Dorna,
Yangyang Qi,
Dorota Szopińska,
THE EFFECT OF ACETIC ACID, GRAPEFRUIT EXTRACT AND SELECTED ESSENTIAL OILS ON GERMINATION, VIGOUR AND HEALTH OF CARROT (Daucus carota L.) SEEDS
,
Acta Scientiarum Polonorum Hortorum Cultus: Vol. 17 No. 2 (2018)
1 2 3 4 5 6 7 8 9 10 > >>
You may also start an advanced similarity search for this article.