Skip to main navigation menu Skip to main content Skip to site footer

Vol. 24 No. 1 (2025):

Articles

Influence of simultaneous treatment of seeds with ZnONPs and Bacillus subtilis on the biological quality parameters of red cabbage seedlings

DOI: https://doi.org/10.24326/asphc.2025.5388
Submitted: June 3, 2024
Published: 12.03.2025

Abstract

Minimizing the negative environmental impact of agrochemicals necessitates new strategies to achieve sustainable food production. Consequently, zinc oxide nanoparticles (ZnONPs) and plant growth-stimulating bacteria (Bacillus subtilis) have been proposed as a method to enhance the growth parameters. The effect of ZnONPs at a concentration range of 0.2–1.4 mg cm–3 on the planktonic growth of B. subtilis bacteria, production of the hormone indole-3-acetic acid, biofilm formation, the ability to biodegrade complex compounds such as Evans Blue, and an increase in oxidative stress was assessed. Concentrations of 0.2 and 0.4 mg cm−3 ZnONPs were used to further test the simultaneous effects of ZnONPs and B. subtilis on red cabbage growth. Moreover, the influence of the simultaneous use of ZnONPs and B. subtilis on seed germination, physiological characteristics, and the content of minerals in red cabbage seedlings grown in the soil was examined. The simultaneous use of ZnONPs and B. subtilis bacteria improves the number of germinated seeds, the length of red cabbage seedlings, and the content of photosynthetic pigments and antioxidants compared with the control or single treatment of seeds with only B. subtilis or ZnONPs. The simultaneous use of B. subtilis and zinc oxide nanoparticles resulted in a higher content of zinc and sodium in red cabbage seedlings, while the content of macronutrients such as Mg and K, and micronutrients such as Fe, Mn, and Co was lower or close to the control value. The combination of B. subtilis + 0.2 mg ZnONPs turned out to be better than B. subtilis + 0.4 mg ZnONPs, as it produced the highest number of germinated seeds, greater plant and root length, and a higher content of chlorophylls, phenolic compounds, and antioxidants. The results indicate that ZnONPs enhance the role of B. subtilis as plant growth-promoting bacteria.

References

  1. Adelanwa, E.B., Medugu, J.M. (2015). Variation of the nutrient composition of red and green cabbage (Brassica oleracea) with respect to age at harvest. Int. J. Appl. Agric. Sci., 7, 183–189.
  2. Ahmed, A., Hasnain, S. (2010). Auxin-producing Bacillus sp.: auxin quantification and effect on the growth of Solanum tuberosum. Pure Appl. Chem., 82, 313–319. https://doi.org/10.1351/PAC-CON-09-02-06 DOI: https://doi.org/10.1351/PAC-CON-09-02-06
  3. Amooaghaie R., Norouzi M., Saeri M. (2017). Impact of zinc and zinc oxide nanoparticles on the physiological and biochemical processes in tomato and wheat. Botany, 95, 441–455. https://doi.org/10.1139/cjb-2016-0194 DOI: https://doi.org/10.1139/cjb-2016-0194
  4. Awasthi, A., Bansal, S., Jangir, L.K., Awasthi, G., Awasthi, K.K., Awasthi, K. (2017). Effect of ZnO nanoparticles on germination of Triticum aestivum seeds. Macromol. Symp., 376(1), 1700043. https://doi.org/10.1002/masy.201700043 DOI: https://doi.org/10.1002/masy.201700043
  5. Azam, A., Ahmed, A., Oves, M., Khan, M., Habib, S., Memic, A. (2012). Antimicrobial activity of metal oxide nanoparticles against Gram-positive and Gram-negative bacteria: A comparative study. Int. J. Nanomed., 7, 6003–6009. https://doi.org/10.2147/IJN.S35347 DOI: https://doi.org/10.2147/IJN.S35347
  6. Basu, A., Prasad, P., Das, S.N., Kalam, S., Sayyed, R.Z., Reddy, M.S., El Enshasy, H. (2021). Plant growth promoting rhizobacteria (PGPR) as green bioinoculants: recent developments, constraints, and prospects. Sustainability, 13(3), 1140. https://dx.doi.org/10.3390/su13031140 DOI: https://doi.org/10.3390/su13031140
  7. Belouchrani, I., Belouchrani, A.S., Mameri, N., Abdi, N., Grib, H., Lounici, H., Drouiche, N., (2016). Phytoremediation of soil contaminated with Zn using Canola (Brassica napus L). Ecol. Eng., 95, 43–49. https://doi.org/10.1016/j.ecoleng.2016.06.064 DOI: https://doi.org/10.1016/j.ecoleng.2016.06.064
  8. Boddupalli, A., Tiwari, R., Sharma, A., Singh, S., Prasanna, R., Nain, L. (2017). Elucidating the interactions and phytotoxicity of zinc oxide nanoparticles with agriculturally beneficial bacteria and selected crop plants. Folia Microbiol., 62, 253–262. https://doi.org/10.1007/12223-017-0495-x DOI: https://doi.org/10.1007/s12223-017-0495-x
  9. Brand-Williams, W., Cuvelier, M.E., Berset, C.L. (1995). Use of a free radical method to evaluate antioxidant activity. LWT-Food Sci. Technol., 28(1), 25–30. https://doi.org/10.1016/S0023-6438(95)80008-5 DOI: https://doi.org/10.1016/S0023-6438(95)80008-5
  10. Cabra Cendales, T., Rodríguez González C.A., Villota Cuásquer, C.P., Tapasco Alzate O.A., Hernández Rodríguez, A. (2017). Bacillus effect on the germination and growth of tomato seedlings (Solanum lycopersicum L). Acta Biol. Colomb., 22(1), 37–44. http://dx.doi.org/10.15446/abc.v22n1.57375 DOI: https://doi.org/10.15446/abc.v22n1.57375
  11. Canaparo, R., Foglietta, F., Limongi, T., Serpe, L. (2020). Biomedical applications of reactive oxygen species generation by metal nanoparticles. Materials, 14(1), 53. https://doi.org/10.3390/ma14010053 DOI: https://doi.org/10.3390/ma14010053
  12. Chavan, S., Nadanathangam, V. (2019). Effects of nanoparticles on plant growth-promoting bacteria in Indian agricultural soil. Agronomy, 9, 140. https://doi.org/10.3390/agronomy9030140 DOI: https://doi.org/10.3390/agronomy9030140
  13. Chen, J., Dou, R., Yang, Z., You, T., Gao, X., Wang, L. (2018) Phytotoxicity and bioaccumulation of zinc oxide nanoparticles in rice (Oryza sativa L). Int. J. Plant Physiol. Biochem., 130, 604–612. https://doi.org/10.1016/j.plaphy.2018.08.019 DOI: https://doi.org/10.1016/j.plaphy.2018.08.019
  14. De la Rosa, G., López-Moreno, M.L., de Haro, D., Botez, C.E., Peralta-Videa, J.R., Gardea-Torresdey, J.L. (2013). Effects of ZnO nanoparticles in alfalfa, tomato, and cucumber at the germination stage: root development and X-ray absorption spectroscopy studies. Pure Appl. Chem., 85(12), 2161–2174. https://doi.org/10.1351/pac-con-12-09-05 DOI: https://doi.org/10.1351/pac-con-12-09-05
  15. Dimkpa, C.O., Zeng, J., McLean, J.E., Britt, D.W., Zhan, J., Anderson, A.J. (2012). Production of indole-3-acetic acid via the indole-3-acetamide pathway in the plant-beneficial bacterium Pseudomonas chlororaphis O6 is inhibited by ZnO nanoparticles but enhanced by CuO nanoparticles. Appl. Environ. Microbiol., 78, 1404–1410. https://doi.org/10.1128/aem.07424-11 DOI: https://doi.org/10.1128/AEM.07424-11
  16. Elhaj-Baddar, Z., Unrine, J.M. (2018). Functionalized-ZnO-nanoparticle seed treatments to enhance growth and Zn content of wheat (Triticum aestivum) seedlings. J. Agric. Food Chem., 66(46), 12166–12178. https://doi.org/10.1021/acs.jafc.8b03277 DOI: https://doi.org/10.1021/acs.jafc.8b03277
  17. Faizan, M., Faraz, A., Yusuf, M., Khan, S.T., Hayat, S. (2018). Zinc oxide nanoparticle-mediated changes in photosynthetic efficiency and antioxidant system of tomato plants. Photosynthetica, 56, 678–686. http://dx.doi.org/10.1007/s11099-017-0717-0 DOI: https://doi.org/10.1007/s11099-017-0717-0
  18. Feigl, G., Kumar, D., Lehotai, N., Tugyi, N., Molnár, Á., Ördög, A., Kolbert, Z. (2013). Physiological and morphological responses of the root system of Indian mustard (Brassica juncea L. Czern.) and rapeseed (Brassica napus L.) to copper stress. Ecotoxicol. Environ. Saf., 94, 179–189. https://doi.org/10.1016/j.ecoenv.2013.04.029 DOI: https://doi.org/10.1016/j.ecoenv.2013.04.029
  19. Felici, C., Vettori, L., Giraldi, E., Forino, L.M.C., Toffanin, A., Tagliasacchi, A.M., Nuti, M. (2008). Single and coinoculation of Bacillus subtilis and Azospirillum brasilense on Lycopersicon esculentum: effects on plant growth and rhizosphere microbial community. Appl. Soil Ecol., 40(2), 260–270. http://doi.org/10.1016/j.apsoil.2008.05.002. DOI: https://doi.org/10.1016/j.apsoil.2008.05.002
  20. Garcia-López, J.I., Zavala-García, F., Olivares-Sáenz, E., Lira-Saldívar, R.H., Díaz Barriga-Castro, E., Ruiz- Torres, N.A., Ramos-Cortez, E., Vázquez-Alvarado, R., Niño-Medina, G. (2018). Zinc oxide nanoparticles boosts phenolic compounds and antioxidant activity of Capsicum annuum L. during germination. Agronomy, 8(10), 215. https://doi.org/10.3390/agronomy8100215 DOI: https://doi.org/10.3390/agronomy8100215
  21. Ghasemian, E., Naghoni, A., Rahvar, H., Kialha, M., Tabaraie, B. (2015). Evaluating the effect of copper nanoparticles in inhibiting Pseudomonas aeruginosa and Listeria monocytogenes biofilm formation. Jundishapur J. Microbiol., 8, e17430. https://doi.org/10.5812/jjm.17430 DOI: https://doi.org/10.5812/jjm.17430
  22. Gudadhe, N.N., Suthar, K.P., Thanki, J.D. (2018). Synthesis and evaluation of ZnO nanoparticles through green and chemical methods and its effect on rice. XXI Biennial National Symposium of Indian Society of Agronomy. MPUAT, Udaipur, 24–26.
  23. Habash, M.B., Goodyear, M.C., Park, A.J., Surette, M.D., Vis, E.C., Harris, R.J., Khursigara, C.M. (2017). Potentiation of tobramycin by silver nanoparticles against Pseudomonas aeruginosa biofilms. Antimicrob. Agents Chemother., 61, 415–417. https://doi.org/10.1128/aac.00415-17 DOI: https://doi.org/10.1128/AAC.00415-17
  24. Haris, Z., Ahmad, I. (2017). Impact of metal oxide nanoparticles on beneficial soil microorganisms and their secondary metabolites. Int. J. Life Sci. Res., 3, 1020–1030. http://dx.doi.org/10.21276/ijlssr.2017.3.3.10 DOI: https://doi.org/10.21276/ijlssr.2017.3.3.10
  25. Hashem, A., Tabassum, B., Abd Allah, E.F. (2019). Bacillus subtilis: A plant-growth promoting rhizobacterium that also impacts biotic stress. Saudi J. Biol. Sci., 26(6), 1291–1297. https://doi.org/10.1016/j.sjbs.2019.05.004 DOI: https://doi.org/10.1016/j.sjbs.2019.05.004
  26. Hosseinpour, A., Haliloglu, K., Tolga Cinisli, K., Ozkan, G., Ozturk, H.I., Pour-Aboughadareh, A., Poczai, P. (2020). Application of zinc oxide nanoparticles and plant growth promoting bacteria reduces genetic impairment under salt stress in tomato (Solanum lycopersicum L. ‘Linda’). Agriculture, 10(11), 521. http://dx.doi.org/10.3390/agriculture10110521 DOI: https://doi.org/10.3390/agriculture10110521
  27. Izydorczyk, G., Saeid, A., Mironiuk, M., Witek-Krowiak, A., Kozioł, K., Grzesik, R., Chojnacka, K. (2022). Sustainable method of phosphorus biowaste management to innovative biofertilizers: A solution for circular economy of the future. Sustain. Chem. Pharm., 27, 100634. https://doi.org/10.1016/j.scp.2022.100634 DOI: https://doi.org/10.1016/j.scp.2022.100634
  28. Javaid, S., Ayyaz, M.K., Rehman, Z.U., Naveed, U., Raza, A.A., Jamil, A., Rasheed, S. (2020). Biofortification through zinc oxide nanoparticles, a sustainable approach for enhancing the productivity of rice: a review. J. Agric. Food Secur., 2, 1–12.
  29. Jha, S., Pudake. R.N. (2016). Molecular mechanism of plant-nanoparticle interactions. Plant Nanotechnol. Princ. Pract., 12, 1337–1354. https://doi.org/10.1007/978-3-319-42154-4_7 DOI: https://doi.org/10.1007/978-3-319-42154-4_7
  30. Kang, S.M., Hamayun, M., Khan, M.A., Iqbal, A., Lee, I.J. (2019a). Bacillus subtilis JW1 enhances plant growth and nutrient uptake of Chinese cabbage through gibberellins secretion. JABFQ, 92. http://dx.doi.org/10.5073/JABFQ.2019.092.023
  31. Kang, S.M., Shahzad, R., Bilal, S., Khan, A.L., Park, Y.G., Lee, K.E., Lee, I.J. (2019b). Indole-3-acetic-acid and ACC deaminase producing Leclercia adecarboxylata MO1 improves Solanum lycopersicum L. growth and salinity stress tolerance by endogenous secondary metabolites regulation. BMC Microbiology, 19, 1–14. https://doi.org/10.1186/s12866-019-1450-6 DOI: https://doi.org/10.1186/s12866-019-1450-6
  32. Khan, A.R., Mustafa, A., Hyder, S., Valipour, M., Rizvi, Z.F., Gondal, A.S., Daraz, U. (2022). Bacillus spp. as bioagents: Uses and application for sustainable agriculture. Biology, 11(12), 1763. https://doi.org/10.3390/biology11121763 DOI: https://doi.org/10.3390/biology11121763
  33. Kouhi, S. M.M., Lahouti, M., Ganjeali, A., Entezari, M.H. (2015). Long-term exposure of rapeseed (Brassica napus L.) to ZnO nanoparticles: anatomical and ultrastructural responses Environ. Sci. Pollut. Res., 22, 10733–10743. https://doi.org/10.1007/s11356-015- 4306-0 DOI: https://doi.org/10.1007/s11356-015-4306-0
  34. Krzepiłko, A., Matyszczuk, K.M., Święciło, A. (2023). Effect of sublethal concentrations of zinc oxide nanoparticles on Bacillus cereus. Pathogens, 12(3), 485. https://doi.org/10.3390/pathogens12030485 DOI: https://doi.org/10.3390/pathogens12030485
  35. Krzepiłko, A., Zych-Wężyk, I., Molas, J., Skwaryło-Bednarz, B., Święciło, A., Skowrońska, M. (2016). The effect of iodine biofortification on selected biological quality parameters of lettuce and radish seedlings. Acta Sci. Pol. Hortorum Cultus, 15(3), 3–16. Available: https://czasopisma.up.lublin.pl/asphc/article/view/2439/1707 [date of access: 15.03.2024].
  36. Lamuela-Raventós R.M. (2017). Folin-Ciocalteu method for the measurement of total phenolic content and antioxidant capacity. In: Measurement of antioxidant activity and capacity. Recent trends and applications. R. Apak, E. Capanoglu, F. Shahidi (eds). John Wiley & Sons, 107–115. https://doi.org/10.1002/9781119135388.ch6 DOI: https://doi.org/10.1002/9781119135388.ch6
  37. Lewis Oscar, F., Mubarak Ali, D., Nithya, C., Priyanka, R., Gopinath, V., Alharbi, N.S., Thajuddin, N. (2015). One pot synthesis and anti-biofilm potential of copper nanoparticles (CuNPs) against clinical strains of Pseudomonas aeruginosa. Biofouling, 31, 379–391. https://doi.org/10.1080/08927014.2015.1048686 DOI: https://doi.org/10.1080/08927014.2015.1048686
  38. Lin, D., Xing, B. (2007). Phytotoxicity of nanoparticles: Inhibition of seed germination and root growth. Environ. Pollut., 150(2), 243–250. https://doi.org/10.1016/j.envpol.2007.01.016 DOI: https://doi.org/10.1016/j.envpol.2007.01.016
  39. Liu, L., Nian, H., Lian, T. (2022). Plants and rhizospheric environment: affected by zinc oxide nanoparticles (ZnONPs). Plant. Physiol. Biochem., 185, 91–100. https://doi.org/10.1016/j.plaphy.2022.05.032 DOI: https://doi.org/10.1016/j.plaphy.2022.05.032
  40. Long, X.X., Yang, X.E., Ni, W.Z., Ye, Z.Q., He, Z.L., Calvert, D.V., Stoffella, J.P. (2003). Assessing zinc thresholds for phytotoxicity and potential dietary toxicity in selected vegetable crops. Commun. Soil Sci. Plant Anal., 34, 1421–1434. http://dx.doi.org/10.1631/jzus.2007.B0001 DOI: https://doi.org/10.1081/CSS-120020454
  41. Ma, W., Peng, D., Walker, S.L., Cao, B., Gao, C.H., Huang, Q., Cai, P. (2017). Bacillus subtilis biofilm development in the presence of soil clay minerals and iron oxides. NPJ Biofilms Microbiomes, 4, 4. https://doi.org/10.1038/s41522-017-0013-6 DOI: https://doi.org/10.1038/s41522-017-0013-6
  42. Mahajan, P., Dhoke, S.K., Khanna, A.S. (2011). Effect of nano-ZnO particle suspension on growth of mung (Vigna radiata) and gram (Cicer arietinum) seedlings using plant agar method. J. Nanotechnol., 7, 1–7. http://dx.doi.org/10.1155/2011/696535 DOI: https://doi.org/10.1155/2011/696535
  43. Mahamuni-Badiger P.P., Patil P.M., Badiger M.V., Patel P.R., Thorat-Gadgil B.S., Pandit A., Bohara R.A. (2019). Biofilm formation to inhibition: Role of zinc oxide-based nanoparticles. Mater. Sci. Eng. C. Mater. Biol., 108, 110319. http://doi.org/10.1016/j.msec.2019.110319. DOI: https://doi.org/10.1016/j.msec.2019.110319
  44. Mahapatra, S., Yadav, R., Ramakrishna, W. (2022). Bacillus subtilis impact on plant growth, soil health and environment: Dr. Jekyll and Mr. Hyde. J. Appl. Microbiol., 132, 3543–3562. https://doi.org/10.1016/j.procbio.2018.12.034 DOI: https://doi.org/10.1111/jam.15480
  45. Mardanova, A.M., Hadieva, G.F., Lutfullin, M.T., Khilyas, I.V.E., Minnullina, L.F., Gilyazeva, A.G., Sharipova, M.R. (2016). Bacillus subtilis strains with antifungal activity against the phytopathogenic fungi. Agric. Sci., 8(1), 1–20. http://dx.doi.org/10.4236/as.2017.81001 DOI: https://doi.org/10.4236/as.2017.81001
  46. Matyszczuk, K.M., Krzepiłko, A. (2022). Model study for interaction of sublethal doses of zinc oxide nanoparticles with environmentally beneficial bacteria Bacillus thuringiensis and Bacillus megaterium. Int. J. Mol. Sci., 23(19), 11820. https://doi.org/10.3390/ijms231911820 DOI: https://doi.org/10.3390/ijms231911820
  47. Mirzaei, H., Darroudi, M. (2017). Zinc oxide nanoparticles: biological synthesis and biomedical applications. Ceram. Int., 43, 907–914. https://doi.org/10.1016/j.ceramint.2016.10.051 DOI: https://doi.org/10.1016/j.ceramint.2016.10.051
  48. Mukherjee, A., Pokhrel, S., Bandyopadhyay, S., Mädler, L., Peralta-Videa, J.R., Gardea-Torresdey, J.L. (2014). A soil mediated phytotoxicological study of iron doped zinc oxide nanoparticles (FeZnO) in green peas (Pisum sativum L.). J. Chem. Eng., 258, 394–401. http://doi.org/10.1016/j.cej.2014.06.112 DOI: https://doi.org/10.1016/j.cej.2014.06.112
  49. Naher, J., Chowdhury, S.A., Mamun, A.A., Mahmud, N., Shumi, W., Khan, R.A. (2014). A comparative study on the biofilm formation of Enterobacter agglomerans and Serretia rubideae in different environmental parameter under single culture condition. Open J. Med. Microbiol., 4, 70–76. http://dx.doi.org/10.4236/ojmm.2014.41008 DOI: https://doi.org/10.4236/ojmm.2014.41008
  50. Ni, Z., Kim, E.D., Chen, Z.J. (2009). Chlorophyll and starch assays. Protocol Exchange. Nature, https://doi.org/10.1038/nprot.2009.12. DOI: https://doi.org/10.1038/nprot.2009.12
  51. Paździoch-Czochra, M. (2003). Relationship of demethylation processes to veratric acid concentration and cell density in cultures of Rhodococcus erythropolis. Cell Biol. Int., 27, 325–336. https://doi.org/10.1016/S1065-6995(02)00282-2 DOI: https://doi.org/10.1016/S1065-6995(02)00282-2
  52. Pereira, S.I.A., Abreu, D., Moreira, H., Vega, A., Castro, P.M.L. (2020). Plant growth-promoting rhizobacteria (PGPR) improve the growth and nutrient use efficiency in maize (Zea mays L.) under water deficit conditions. Heliyon, 6(10). https://doi.org/10.1016/j.heliyon.2020.e05106 DOI: https://doi.org/10.1016/j.heliyon.2020.e05106
  53. Pérez-García, L.A., Sáenz-Mata, J., Fortis-Hernández, M., Navarro-Muñoz, C.E., Palacio-Rodríguez, R., Preciado-Rangel, P. (2023). Plant-growth-promoting rhizobacteria improve germination and bioactive compounds in cucumber seedlings. Agronomy, 13(2), 315. http://dx.doi.org/10.3390/agronomy13020315 DOI: https://doi.org/10.3390/agronomy13020315
  54. Plaksenkova, I., Kokina, I., Petrova A., Jermaļonoka, M., Gerbreders, V., Krasovska, M. (2020). The impact of zinc oxide nanoparticles on cytotoxicity, genotoxicity, and miRNA expression in barley (Hordeum vulgare L.). Seedlings. Sci. World J., 2020, 6649746. http://doi.org/10.1155/2020/6649746 DOI: https://doi.org/10.1155/2020/6649746
  55. Prajapati, B.J., Patel, S.B., Patel, R.P., Ramani, V.P., 2018. Effect of zinc nano-fertilizer on growth and yield of wheat (Triticum aestivum L.) under saline irrigation condition. Agropedology, 28(1), 31–37. http://dx.doi.org/10.47114/j.agroped.2018.jun5 DOI: https://doi.org/10.47114/j.agroped.2018.jun5
  56. Prasad, T.N.V.K.V., Sudhakar, P., Sreenivasulu, Y., Latha, P., Munaswamy, V., Reedy K.R., Sreeprasad, T.S., Sajanlal, P.R., Pradeep, T. (2012). Effect of nanoscale zinc oxide particles on the germination, growth and yield of peanut. J. Plant Nutr., 35, 905–927. https://doi.org/10.1080/01904167.2012.663443 DOI: https://doi.org/10.1080/01904167.2012.663443
  57. Qayyum, S., Oves, M., Khan, A.U. (2017). Obliteration of bacterial growth and biofilm through ROS generation by facilely synthesized green silver nanoparticles. PLoS One, 12, e0181363. https://doi.org/10.1371/journal.pone.0181363 DOI: https://doi.org/10.1371/journal.pone.0181363
  58. Qin, Y., Angelini, L.L., Chai, Y. (2022). Bacillus subtilis cell differentiation, biofilm formation and environmental prevalence. Microorganisms, 10(6), 1108. https://doi.org/10.3390/microorganisms10061108 DOI: https://doi.org/10.3390/microorganisms10061108
  59. Rajput, V.D., Chernikova, N., Minkina, T., Gorovtsov, A., Fedorenko, A., Mandzhieva, S., Bauer, T., Tsitsuashvili, V., Beschetnikov, V., Wong, M.H. (2023). Biochar and metal-tolerant bacteria in alleviating ZnO nanoparticles toxicity in barley. Environ. Res., 220, 115243. http://doi.org/10.1016/j.envres.2023.115243 DOI: https://doi.org/10.1016/j.envres.2023.115243
  60. Rajput, V.D., Singh, A., Minkina, T., Rawat, S., Mandzhieva, S., Sushkova, S., Upadhyay, S.K. (2021). Nano-enabled products: challenges and opportunities for sustainable agriculture. Plants, 10, 2727. https://doi.org/10.3390/plants10122727 DOI: https://doi.org/10.3390/plants10122727
  61. Raskar, S., Shankar, L. (2014). Effect of zinc oxide nanoparticles on cytology and seed germination in onion. Int. J. Curr. Microbiol. App. Sci., 3(2), 467–473.
  62. Raza, S.H., Shahzadi, A., Iqbal, M., Shafiq, F., Mahmood, A., Anwar, S., Ashraf, M. (2022). Foliar application of nano-zinc oxide crystals improved zinc biofortification in cauliflower (Brassica oleracea L. var. botrytis). Appl. Nanosci., 12(6), 1803–1813. https://doi.org/10.1007/s13204-022-02455-0 DOI: https://doi.org/10.1007/s13204-022-02455-0
  63. Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M., Rice-Evans, C. (1999). Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med., 26(9–10), 1231–1237. https://doi.org/10.1016/S0891-5849(98)00315-3 DOI: https://doi.org/10.1016/S0891-5849(98)00315-3
  64. Saberi-Rise, R., Moradi-Pour, M. (2020). The effect of Bacillus subtilis Vru1 encapsulated in alginate–bentonite coating enriched with titanium nanoparticles against Rhizoctonia solani on bean. Int. J. Biol. Macromol., 152,1089–1097. https://doi.org/10.1016/j.ijbiomac.2019.10.197 DOI: https://doi.org/10.1016/j.ijbiomac.2019.10.197
  65. Sarkhosh, S., Kahrizi, D., Darvishi, E., Tourang, M., Haghighi-Mood, S., Vahedi, P., Ercisli, S. (2022). Effect of zinc oxide nanoparticles (ZnONPs) on seed germination characteristics in two Brassicaceae family species: Camelina sativa and Brassica napus L. J. Nanometer., 1–15. http://dx.doi.org/10.1155/2022/1892759 DOI: https://doi.org/10.1155/2022/1892759
  66. Seyed S., R., Khoramdel, S. (2016). Effects of nano-zinc oxide and seed inoculation by plant growth promoting rhizobacteria (PGPR) on yield, yield components and grain filling period of soybean (Glycine max L.). Iran J. Field Crops Res., 13, 738–753. https://doi.org/10.22067/gsc.v13i4.32491
  67. Shah, A. A., Aslam, S., Akbar, M., Ahmad, A., Khan, W.U., Yasin, N.A., Ali, S. (2021). Combined effect of Bacillus fortis IAGS 223 and zinc oxide nanoparticles to alleviate cadmium phytotoxicity in Cucumis melo. Int. J. Plant Physiol. Biochem., 158, 1–12. https://doi.org/10.1016/j.plaphy.2020.11.011 DOI: https://doi.org/10.1016/j.plaphy.2020.11.011
  68. Shaymurat, T., Gu, J., Xu, C., Yang, Z., Zhao, Q., Liu, Y., Liu, Y., (2012). Phytotoxic and genotoxic effects of ZnO nanoparticles on garlic (Allium sativum L.): a morphological study. Nanotoxicology, 6, 241–248. https://doi.org/10.3109/17435390.2011.570462 DOI: https://doi.org/10.3109/17435390.2011.570462
  69. Singleton, V.L., Orthofer, R., Lamuela-Raventos, R.M. (1999). Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteu reagent. Method. Enzymol., 299, 152–178. http://dx.doi.org/10.1016/S0076-6879(99)99017-1 DOI: https://doi.org/10.1016/S0076-6879(99)99017-1
  70. Solanki, P., Laura, J.S. (2018). Effect of ZnO nanoparticles on seed germination and seedling growth in wheat (Triticum aestivum). J. Pharmacogn. Phytochem., 7(5), 2048–2052.
  71. Stuiver, C.E.E., Posthumus, F.S., Parmar, S., Shahbaz, M., Hawkesford, M.J., Kok, L.J.D. (2014). Zinc exposure has differential effects on uptake and metabolism of sulfur and nitrogen in Chinese cabbage. J. Plant. Nutr. Soil. Sc., 177(5), 748–757. http://dx.doi.org/10.1002/jpln.201300369 DOI: https://doi.org/10.1002/jpln.201300369
  72. Sun, Z., Xiong, T., Zhang, T., Wang, N., Chen, D., Li, S. (2019). Influences of zinc oxide nanoparticles on Allium cepa root cells and the primary cause of phytotoxicity. Ecotoxicology, 28, 175–188. https://doi.org/10.1007/s10646-018-2010-9 DOI: https://doi.org/10.1007/s10646-018-2010-9
  73. Talebian, N., Amininezhad, S.M., Doudi, M. (2013). Controllable synthesis of ZnO nanoparticles and their morphology-dependent antibacterial and optical properties. J. Photochem. Photobiol B., 20, 66–73. https://doi.org/10.1016/j.jphotobiol.2013.01.004 DOI: https://doi.org/10.1016/j.jphotobiol.2013.01.004
  74. Tanveer, Y., Yasmin, H., Nosheen, A., Ali, S., Ahmad, A. (2022). Ameliorative effects of plant growth promoting bacteria, zinc oxide nanoparticles and oxalic acid on Luffa acutangula grown on arsenic enriched soil. Environ. Pollut., 300, 118889. https://doi.org/10.1016/j.envpol.2022.118889 DOI: https://doi.org/10.1016/j.envpol.2022.118889
  75. Tsavkelova, E.A., Klimova, S.Y., Cherdyntseva, T.A. and Netrusov, A.I., 2006. Microbial producers of plant growth stimulators and their practical use: a review. Appl. Biochem. Microbiol., 42, 117–126. http://dx.doi.org/10.1134/S0003683806020013 DOI: https://doi.org/10.1134/S0003683806020013
  76. Turan, M., Ekinci, M., Yildirim, E., Güneş, A., Karagöz, K., Kotan, R., Dursun, A. (2014). Plant growth-promoting rhizobacteria improved growth, nutrient, and hormone content of cabbage (Brassica oleracea) seedlings. Turk. J. Agric. For., 38(3), 327–333. http://dx.doi.org/10.3906/tar-1308-62 DOI: https://doi.org/10.3906/tar-1308-62
  77. Umar, W., Hameed, M.K., Aziz, T., Maqsood, M.A., Bilal, H.M., Rasheed, N. (2021). Synthesis, characterization and application of ZnO nanoparticles for improved growth and Zn biofortification in maize. Arch. Agron. Soil Sci., 67(9), 1164–1176. http://dx.doi.org/10.1080/03650340.2020.1782893 DOI: https://doi.org/10.1080/03650340.2020.1782893
  78. Wang, P., Menzies, N.W., Lombi, E., McKenna, B.A., Johannessen, B., Glover, C.J., Kappen, P., Kopittke, P.M. (2013). Fate of ZnO nanoparticles 640 in soils and cowpea (Vigna unguiculata). Environ. Sci. Technol. 2013, 47, 13822–13830. DOI: https://doi.org/10.1021/es403466p
  79. Wang, X.P., Li, Q.Q., Pei, Z.M., Wang, S.C. (2018). Effects of zinc oxide nanoparticles on the growth, photosynthetic traits, and antioxidative enzymes in tomato plants. Biol. Plant., 62, 801–808. http://dx.doi.org/10.1007/s10535-018-0813-4 DOI: https://doi.org/10.1007/s10535-018-0813-4
  80. White, J.F., Torres, M.S., Verma, S.K., Elmore, M.T., Kowalski, K.P., Kingsley, K.L. (2019). Evidence for widespread microbivory of endophytic bacteria in roots of vascular plants through oxidative degradation in root cell periplasmic spaces. In: Singh, A.K., Kumar, A., Singh, P.K. (eds). PGPR amelioration in sustainable agriculture. Woodhead Publ., 167–193. https://doi.org/10.1016/B978-0-12-815879-1.00009-4 DOI: https://doi.org/10.1016/B978-0-12-815879-1.00009-4
  81. Xia, J., Wang, Q., Luo, Q., Chen, Y., Liao, X.R., Guan, Z.B. (2019). Secretory expression and optimization of Bacillus pumilus CotA-laccase mutant GWLF in Pichia pastoris and its mechanism on Evans blue degradation. Process Biochem., 78, 33–41. https://doi.org/10.1016/j.procbio.2018.12.034 DOI: https://doi.org/10.1016/j.procbio.2018.12.034
  82. Xiang, L., Zhao, H.M., Li, Y.W., Huang, X.P., Wu, X.L., Zhai, T., Mo, C.H. (2015). Effects of the size and morphology of zinc oxide nanoparticles on the germination of Chinese cabbage seeds. Environ. Sci. Pollut. Res., 22, 10452–10462. https://doi.org/10.1007/s11356-015-4172-9 DOI: https://doi.org/10.1007/s11356-015-4172-9

Downloads

Download data is not yet available.

Most read articles by the same author(s)

Similar Articles

1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.